Skip to main content

Part of the book series: Biochemistry of the Elements ((BOTE,volume 4))

  • 108 Accesses

Abstract

Certain exothermic chemical reactions produce light instead of heat. Chemiluminescent reactions also occur in living systems. The term usually used for light production from living systems is bioluminescence. Fireflies, bacteria, and other organisms produce bioluminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Adam, W., 1975. Biological light: a-Peroxylates as bioluminescent intermediates, J. Chem. Ed52: 138–145.

    Article  CAS  Google Scholar 

  • Anderson, J. A., 1980. Biochemistry of centipede bioluminescence, Photochem. Photobiol. 31:179–181. Baumstark, A. L., Cline, T. W., and Hastings, J. W., 1979. Reversible steps in the reaction of

    Google Scholar 

  • aldehydes with bacterial luciferase intermediates, Arch. Biochem. Biophys. 193:449–455.

    Google Scholar 

  • Dunn, D. K., Michaliszyn, G. A., Bogacki, I. G., and Merghen, E. A., 1973. Conversion of aldehyde to acid in the bacterial bioluminescent reaction, Biochemistry12: 4911–4918

    Article  PubMed  CAS  Google Scholar 

  • Hart, R. C., Stempel, K. E., Boyer, P. D., and Cormier, M. J., 1978. Mechanism of the enzyme- catalyzed bioluminescent oxidation of coelenterate-type luciferin, Biochem. Biophys. Res. Commun81: 980–986.

    Article  PubMed  CAS  Google Scholar 

  • Hastings, J. W., and Balny, C., 1975. The oxygenated bacterial luciferase intermediate, J. Biol. Chem250: 7288–7293.

    PubMed  CAS  Google Scholar 

  • Hastings, J. W., and Gibson, Q. H., 1963. Intermediates in the bioluminescent oxidation of reduced flavin mononucleotide, J. Biol. Chem238: 2537–2554.

    PubMed  CAS  Google Scholar 

  • Hastings, J. W., Balny, C., LePeuch, C., and Douzou, P., 1973. Spectral properties of an oxygenated luciferase-flavin intermediate isolated by low temperature chromatography, Proc. Natl. Acad. Sci. U.S.A70: 3468–3472.

    Article  PubMed  CAS  Google Scholar 

  • Kemal, C., and Bruice, T. C., 1976. Simple synthesis of a 4a-hydroperoxy adduct of a 1,5- dihydroflavin: Preliminary studies of a model for bacterial luciferase, Proc. Natl. Acad. Sci. U.S.A73: 995–999.

    Article  PubMed  CAS  Google Scholar 

  • Kemal, C., Chan, T. W., and Bruice, T. C., 1977. Chemiluminescent reactions and electrophilic oxygen donating ability of 4a-hydroperoxyflavins: General synthetic method for the preparation of N5-alkyl-1, 5-dihydroflavins, Proc. Natl. Acad. Sci. U.S.A74: 405.

    Article  PubMed  CAS  Google Scholar 

  • Kishi, T., Goto, T., Inoue, S., Suguira, S., and Kishimoto, H., 1966. Cypridina bioluminescence. III. Total synthesis of Cypridina luciferin, Tetrahedron Lett. 29: 3445–3450.

    Article  Google Scholar 

  • Koka, P., and Lee, J., 1979. Separation and structure of the prosthetic group of the blue fluorescence protein from the bioluminescent bacterium Photobacterium phosphoreum, J. Biol. Chem. 76: 3068–3072.

    CAS  Google Scholar 

  • Kopecky, K. R., and Mumford, C., 1969. Luminescence in the thermal decomposition of 3, 3, 4- trimethyl-1, 2-dioxetane, Can. J. Chem47: 709–711.

    Article  CAS  Google Scholar 

  • Lowe, J. N., Ingraham, L. L., Alspach, J., and Rasmussen, R., 1976. A proposed symmetry forbidden oxidation mechanism for the bacterial luciferase catalyzed reaction, Biochem. Biophys. Res. Commun73: 465–469.

    Article  PubMed  CAS  Google Scholar 

  • McCapra, F., 1970. The chemiluminescence of organic compounds, PureAppl. Chem24: 611–629.

    Article  CAS  Google Scholar 

  • McCapra, F., and Hysert, D. W., 1973. Bacterial bioluminescence—identification of fatty acid as product, its quantum yield and a suggested mechanism, Biochem. Biophys. Res. Commun52: 298–304.

    Article  PubMed  CAS  Google Scholar 

  • Merghen, E. A., and Hastings, J. W., 1971. Binding site determination from kinetic data: Reduced flavin mononucleotide binding to bacterial luciferase, J. Biol. Chem246: 7666–7674.

    Google Scholar 

  • Schuster, G. B., 1979. Chemiluminescence of organic peroxides: Conversion of ground state reactants to excited state products by the chemically initiated electron exchange luminescence mechanism, Acc. Chem. Res12: 366–373.

    Article  CAS  Google Scholar 

  • Shepherd, P. T., and Bruice, T. C., 1980. Formation of a nonchemiluminescent excited state species in the decomposition of 4a(alkylperoxy) flavins, J. Am. Chem. Soc102: 7774–7776.

    Article  CAS  Google Scholar 

  • Shimomura, O., and Johnson, F. H., 1971. Mechanism of the luminescent oxidation of Cypridina luciferin, Biochem. Biophys. Res. Commun44: 340–346.

    Article  PubMed  CAS  Google Scholar 

  • Shimomura, O., Johnson, F. H., and Kohama, Y., 1972. Reactions involved in bioluminescence systems of limpet (Latia neritoides) and luminous bacteria, Proc. Natl. Acad. Sci. U.S.A69: 2086–2089.

    Article  PubMed  CAS  Google Scholar 

  • Shimomura, O., Goto, T., and Johnson, F. H., 1977. Source of oxygen in the C02 produced in the bioluminescent oxidation of firefly luciferin, Proc. Natl. Acad. Sci. U.S.A74: 2799–2802.

    Article  PubMed  CAS  Google Scholar 

  • Tu, S.-C., 1979. Isolation and properties of bacterial luciferase-oxygenated flavin intermediate complexed with long-chain alcohols, Biochemistry18: 5940–5945.

    Article  PubMed  CAS  Google Scholar 

  • Turro, N. J., and Lechtken, P., 1972. Thermal decomposition of tetramethyl-1, 2-dioxetane: Selective and efficient chemelectronic generation of triplet acetone, J. Am. Chem. Soc94: 2886–2888.

    Article  CAS  Google Scholar 

  • White, E. H., and Worther, H., 1966. Analogs of firefly luciferin III, J. Org. Chem31: 1484–1488.

    Article  PubMed  CAS  Google Scholar 

  • White, E. H., McCapra, F., Field, G. F., and McElroy, W. D., 1961. The structure and synthesis of firefly luciferin, J. Am. Chem. Soc83: 2402–2403.

    Article  CAS  Google Scholar 

  • White, E. H., Worther, H., Seliger, H. H., and McElroy, W. D., 1966. Amino analogs of firefly luciferin and biological activity thereof, J. Am. Chem. Soc88: 2015–2019.

    Article  CAS  Google Scholar 

  • White, E. H., Miano, J. D., and Umbreit, M., 1975. On the mechanism of firefly luciferin luminescence, J. Am. Chem. Soc97: 198–200.

    Article  PubMed  CAS  Google Scholar 

  • White, E. H., Steinmetz, M. G., Miano, J. D., Wildes, P. D., and Morland, R., 1980. Chemi and bioluminescence of firefly luciferin, J. Am. Chem. Soc. 102: 3199–320

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Ingraham, L.L., Meyer, D.L. (1985). Bioluminescenc. In: Biochemistry of Dioxygen. Biochemistry of the Elements, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2475-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2475-1_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9501-3

  • Online ISBN: 978-1-4613-2475-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics