Skip to main content

Cytochrome P-450

  • Chapter
Biochemistry of Dioxygen

Part of the book series: Biochemistry of the Elements ((BOTE,volume 4))

  • 108 Accesses

Abstract

Cytochrome P-450 is a group of nonspecific hydroxylating systems that hydroxylate substrates of widely varying structure (Ullrich, 1979). Cytochrome P-450 is important in the degradative hydroxylation of drugs in the body (Gillette et al., 1972). The enzyme can hydroxylate steroids and hydrocarbons. For example,Corynebacterium utilizes P-450 to oxidize n-octane to 1-octanol (Cardini and Justishuk, 1970), and fatty acids are hydroxylated at the ω and (ω-1) positions (Bjorkhem and Danielson, 1970; Ellinet al., 1972; Ichihara et al., 1979). Either cytochrome P-450 or similar iron-containing monooxygenases cleave inositol to n-glucuronic acid (Charalampous, 1959, 1960).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhtar, N., Hamilton, J. G., Boyd, D. R., Brawnstein, A., Seilfried, H. E., and Jerina, D. M., 1979. Anthracene-1, 2-oxide: Synthesis and role in the metabolism of anthracene by mammals,J. Chem. Soc. Perkins Trans.1 1979: 1442–1446.

    Google Scholar 

  • Bayer, E., Hill, H. A. O., Roder, A., and Williams, R. J. P., 1969. The interaction between haem¬iron and thiols, Chem. Commun. 1969: 109.

    Google Scholar 

  • Bjorkhem, I., and Danielsson, H., 1970. ω and (ω-1)-oxidation of fatty acids by rat liver microsome,Eur. J. Biochem. 17:450–459.

    Article  PubMed  CAS  Google Scholar 

  • Blake, R. C., II, and Coon, M. J., 1980. On the mechanism of action of cytochrome P450,J. Biol. Chem.255: 4100–4111.

    PubMed  CAS  Google Scholar 

  • Boyd, D. R., Daly, J. W., and Jerina, D. M., 1972. Rearrangement of [1 — 2H] and [2 — 2H] naphthalene-1, 2-oxides to 1-naphthol: Mechanisms of the NIH shift,Biochemistry11: 1961–1966.

    Article  PubMed  CAS  Google Scholar 

  • Cardini, J., and Justishuk, P., 1970. The enzymatic hydroxylation of n-octane by Corynebacterium sp. strain 7EIC,J. Biol. Chem.245: 2789–2796.

    PubMed  CAS  Google Scholar 

  • Charalampous, F. C., 1959. Biochemical studies of inositol. V. Purification and properties of the enzyme that cleaves inositol to D-glucuronic acid,J. Biol. Chem.234: 220–227.

    PubMed  CAS  Google Scholar 

  • Charalampous, F. C., 1960. Biochemical studies on inositol. VI. Mechanism of cleavage of inositol to D-glucuronic acid,J. Biol. Chem.235: 1286–1291.

    PubMed  CAS  Google Scholar 

  • Chevion, M., Peisach, J., and Blumberg, W. E., 1977. Imidazole, the ligandtransto mercaptide in ferric cytochrome P450,J. Biol. Chem.252: 3637–3645.

    PubMed  CAS  Google Scholar 

  • Chin, D.-H., Balch, A. L., and LaMar, G. N., 1980a. Formation of porphyrin ferryl (FeO+2) complexes through the addition of nitrogen bases to peroxo-bridged iron(III) porphyrins,J. Am. Chem. Soc.102: 1446–1448.

    Article  CAS  Google Scholar 

  • Chin, D.-H., LaMar, G. N., and Balch, A. L., 1980b. Role of ferryl (FeO+ +) complexes in oxygen atom transfer reactions: Mechanism of iron(II) porphyrin catalyzed oxygenation of triphenylphosphine,J. Am. Chem. Soc.102: 5945–5947.

    Article  CAS  Google Scholar 

  • Cinti, D., Sligar, S. G.., Gibson, G. G., and Schenkman, J. B., 1979. Temperature-dependent spin equilibrium of microsomal and solubilized P450 from rat liver,Biochemistry18: 36–42.

    Article  PubMed  CAS  Google Scholar 

  • Collman, J. P., Sorrell, T. N., and Hoffman, B. M., 1975. Models for cytochrome P450,J. Am. Chem. Soc.97: 913–914.

    Article  PubMed  CAS  Google Scholar 

  • Copper, D. Y., Levin, S., Narasimhula, S., and Rosenthal, O., 1965. Photochemical action spectrum of the terminal oxidase of mixed function oxidase systems,Science147: 400–402.

    Article  Google Scholar 

  • Cramer, S. P., Dawson, J. H., Hodgson, K. O., and Hager, L. P., 1978. Studies on the ferric forms of cytochrome P450 and chloroperoxidase by extended X-ray absorption fine structure: Characterization of the Fe-N and Fe-S distances,J. Am. Chem. Soc.100: 7282–7290.

    Article  CAS  Google Scholar 

  • Dawson, J. H., and Cramer, S. P., 1978. Oxygenated cytochrome P450: Evidence against axial histidine ligation of iron,FEES Lett. 88: 127–130.

    Article  CAS  Google Scholar 

  • Dawson, J. H., Holm, R. H., Trudel, J. R., Barth, G., Linden, R. E., Bunnenberg, E., Djerassi, C., and Tang, S. C., 1976. Oxidized cytochrome P450: Magnetic circular dichroism evidence for thiolate ligation in the substrate-bound form-Implications for the catalytic mechanism,J. Am. Chem. Soc.98: 3707–3709.

    Article  PubMed  CAS  Google Scholar 

  • Ellin, A., Jakobsson, S. V., Schenkman, J. B., and Orrenius, S., 1972. Cytochrome P450 of rat kidney cortex microsomes: Its involvement in fatty acid w and (ω-1)-hydroxylation, Arch.Biochem. Biophys.150: 64–71.

    Article  CAS  Google Scholar 

  • Estabrook, R. W., Hildebrandt, A. G., Baron, J., Netter, N. J., and Leibaman, K., 1971. A new spectral intermediate associated with cytochrome P450 function in liver microsomes,Biochem. Biophys. Res.Commun. 42: 132–139.

    CAS  Google Scholar 

  • Foote, C. S., Shook, F. C., and Abakerli, R. A., 1980. Chemistry of superoxide ion. 4. Singlet oxygen is not a major product of dismutation,J. Am. Chem. Soc.102: 2503–2504.

    Article  CAS  Google Scholar 

  • Gillette, J. E., Davis, D. C., and Sasame, H. A., 1972. Cytochrome P450 and its role in drug metabolism,Annu. Rev. Pharm.12: 57–84.

    Article  CAS  Google Scholar 

  • Gorrod, J. W. (ed.), 1978.Biological Oxidation of Nitrogen, Elsevier North-Holland, New York.

    Google Scholar 

  • Grover, A. L., Hewer, A., and Sims, P., 1971. Epoxides as microsomal metabolites of polycyclic hydrocarbons,FEBS Lett. 18: 76–79.

    Article  PubMed  CAS  Google Scholar 

  • Groves, J. T., and Nemo, T. E., 1983. Aliphatic hydroxylation catalyzed by iron porphyrin complex,J. Am. Chem. Soc.105: 6243–6248.

    Article  CAS  Google Scholar 

  • Groves, J. T., and Subramanian, D. V., 1984. Hydroxylation by cytochrome P450 and metalloporphyrin models: Evidence for allylic rearrangements,J. Am. Chem. Soc.106: 2177–2181.

    Article  CAS  Google Scholar 

  • Groves, J. T., McClusky, G. A., White, R. E., and Coon, M. J., 1978. Aliphatic hydroxylation by highly purified liver microsomal cytochrome P450: Evidence for a carbon radical intermediate,Biochem. Biophys. Res. Commun.81: 154–160.

    Article  PubMed  CAS  Google Scholar 

  • Groves, J. T., Nemo, T. E., and Myers, R. S., 1979. Hydroxylation and epoxidation catalyzed by iron-porphine complexes: Oxygen transfer from iodosylbenzene,J. Am. Chem. Soc.101: 1032–1033.

    Article  CAS  Google Scholar 

  • Groves, J. T., Haushalter, R. C., Nakamura, M., Wemo, T. E., and Evans, B. J., 1981. High-valent iron porphyrin complexes related to peroxidase and cytochrome P450,J. Am. Chem. Soc.103: 2884–2886.

    Article  CAS  Google Scholar 

  • Guengerich, F. P., and McDonald, T. L., 1984. Chemical mechanism of catalysis by cytochromes P450: A unified view,Acc. Chem. Res.17: 9–16.

    Article  CAS  Google Scholar 

  • Guengerich, F. P., Ballou, D. P., and Coon, M. J., 1976. Spectral intermediates in the reaction of oxygen with purified liver microsomal cytochrome P450,Biochem. Biophys. Res. Commun.70: 951–956.

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson, J., Rondahl, L., and Bergmann, J., 1979. Iodosylbenzene derivatives as oxygen donors in cytochrome P450 catalyzed steroid hydroxylations,Biochemistry18: 865–870.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, G. A., 1964. Oxidation by molecular oxygen. II. The oxygen atom transfer mechanism of mixed-function oxidases and the model for mixed function oxidases,J. Am. Chem. Soc.86: 3391–3392.

    Article  CAS  Google Scholar 

  • Hanson, L. K., Sligar, S. G., and Gunsalus, I. C., 1977. Electronic structure of cytochrome P450,Croat. Chem. Acta49: 237–250.

    CAS  Google Scholar 

  • Heimbrook, E. C., and Sligar, S. G., 1981. Multiple mechanisms of cytochrome P450 catalyzed substrate hydroxylations,Biochem. Biophys. Res. Commun.9: 530–535.

    Article  Google Scholar 

  • Hrycay, E. G., Gustafsson, J. A., Ingleman-Sundberg, M., and Ernster, L., 1975. Sodium periodate, sodium chlorite, organic hydroperoxides and H2O2 as hydroxylating agents in steroid hydroxylation reactions catalyzed by partially purified cytochrome P-450,Biochem. Biophys. Res. Commun.66: 209–216.

    Article  PubMed  CAS  Google Scholar 

  • Ichihara, K., Yamakawa, I., Kusinose, E., and Kusinose, M., 1979. Fatty acid ω and (ω-1)-hydroxylation in rabbit intestinal mucosa microsomes,J. Biochem.86: 139–146.

    PubMed  CAS  Google Scholar 

  • Ishimura, Y., Ullrich, V., and Peterson, J. A., 1971. Oxygenated cytochrome P450 and its possible role in enzymatic hydroxylation,Biochem. Biophys. Res. Commun.42: 140–146.

    Article  PubMed  CAS  Google Scholar 

  • Jerina, D. M., Daly, J. W., Witkop, B., Zaltzman-Nirenberg, P., and Udenfriend, S., 1968. The role of arene oxide-oxepin systems in the metabolism of aromatic substrates. III. Formation of 1, 2-naphthalene oxide from naphthalene by liver microsomes,J. Am. Chem. Soc.90: 6525–6527.

    Article  PubMed  CAS  Google Scholar 

  • Jerina, D. M., Daly, J. W., Witkop, B., Zaltzman-Nirenberg, P., and Udenfriend, S., 1970. 1, 2-Naphthalene oxide as an intermediate in the microsomal hydroxylation of naphthalene,Biochemistry 9:147–155.

    Google Scholar 

  • Kadlubar, F. F., Morton, K. C., and Ziegler, D. M., 1973. Microsomal-catalyzed hydroperoxide¬dependent C-oxidation of amines,Biochem. Biophys. Res. Commun.54: 1255–1261.

    Article  PubMed  CAS  Google Scholar 

  • Kasperek, G. J., and Bruice, T. C., 1972. The mechanism of aromatization of arene oxides,J. Am. Chem. Soc.94: 198–202.

    Article  CAS  Google Scholar 

  • Koch, S., Tang, S. C., Holm, R. H., Frankel, R. B., and Ibers, J. A., 1975. Ferric porphyrin thiolates: Possible relationship to cytochrome P450 enzymes and the structure of (p-nitrobenzene-thiolate) iron(III) protoporphyrin IX dimethyl ester,J. Am. Chem. Soc.97: 916–918.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenberger, F., Nastainczyk, W., and Ullrich, V., 1976. Cytochrome P450 as an oxene transferase,Biochem. Biophys. Res. Commun.70: 939–946.

    Article  PubMed  CAS  Google Scholar 

  • Lipscomb, J. D., Sligar, S. G., Namtvedt, M. J., and Gunsalus, I. C., 1976. Autoxidation and hydroxylation reactions of oxygenated P450,J. Biol. Chem.251: 1116–1124.

    PubMed  CAS  Google Scholar 

  • Loew, G. H., and Rohmer, M. M., 1980. Electronic spectra of model oxy, carboxy P450 and carboxy heme complexes,J. Am. Chem. Soc.102: 3655–3657.

    Article  CAS  Google Scholar 

  • May, S. W., Gordon, S. L., and Steltenkamp, M. S., 1977. Enzymatic epoxidation of traps, traps 1, 8-dideutero-1, 7-octadiene: Analysis using partially relaxed proton Fourier transform NMR,J. Am. Chem. Soc.99: 2017–2024.

    Article  PubMed  CAS  Google Scholar 

  • Mynert, E. W., Foreman, R. L., and Watabe, T., 1970. Epoxides as obligatory intermediates in the metabolism of olefins to glycols,J. Biol. Chem.245: 5234–5238.

    Google Scholar 

  • Nordblom, G. D., White, R. E., and Coon, M. J., 1976. Studies on the hydroperoxide-dependent substrate hydroxylation by purified rat liver microsomal cytochrome P450,Arch. Biochem. Biophys.175: 524–533.

    Article  PubMed  CAS  Google Scholar 

  • Omura, T., Saunders, E., Estabrook, R. W., Cooper, D. V., and Rosenthal, O., 1966. Isolation from adrenal cortex of a nonheme iron protein and flavoprotein functional as a reduced triphosphopyridine nucleotide cytochrome P450 reductase,Arch. Biochem. Biophys.117: 660–673.

    Article  CAS  Google Scholar 

  • Peisach, J., Mims, W. B., and Davis, J. L., 1979. Studies of the electron-nuclear coupling between Fe(III) and 14N in cytochrome P450 and in a series of low spin heme compounds,J. Biol. Chem. 254:12, 379–12, 389.

    Google Scholar 

  • Pesch, F., Jerina, D. M., Daly, J. W., Lu, A. Y. H., Kuntzman, R., and Conney, A. H., 1972. A reconstituted enzyme fraction that converts naphthalene totrans-1, 2-dihydroxy-1, 2-dihy¬dronaphythalene via naphthalene-1, 2-oxide: Presence of epoxide hydrase in cytochrome P450 and P448 fractions,Arch. Biochem. Biophys.153: 62–67.

    Article  Google Scholar 

  • Peterson, J. A., Ishimura, Y., and Griffin, B. W., 1972. Pseudomonas putida cytochrome P450: Characterization of an oxygenated form of hemo-protein,Arch. Biochem. Biophys.149: 197–208.

    Article  PubMed  CAS  Google Scholar 

  • Pudzianowski, A. T., and Loew, G. H., 1980. Quantum mechanical studies of model cytochrome P450 hydrocarbon mechanism: A MINDO/3 study of hydroxylation and epoxidation pathways for methane and ethylene,J. Am. Chem. Soc.102: 5443–5449.

    Article  CAS  Google Scholar 

  • Rahimtula, A. D., O’Brien, P. J., Seifried, H. E., and Jerina, D. M., 1978. The mechanism of action of cytochrome P450: Occurrence of the NIH shift during hydroxide-dependent aromatic hydroxylations,Eur. J. Biochem.89: 133–141.

    Article  PubMed  CAS  Google Scholar 

  • Selkirk, J. K., Huberman, E., and Heidelberger, C., 1971. An epoxide intermediate in the micro¬somal metabolism of the chemical carcinogen, dibenz-(a,h)-anthracene,Biochem. Biophys. Res. Commun.43: 1010–1016.

    Article  PubMed  CAS  Google Scholar 

  • Shannon, P., and Bruice, T. C., 1981. A novel P450 model system for the N-dealkylation reaction,J. Am. Chem. Soc.103: 4580–4582.

    Article  CAS  Google Scholar 

  • Sharrock, M., Munck, E., Debrunner, P. G., Marshall, V., Lipscomb, J. D., and Gunsalus, I. C., 1973. Mossbauer studies of cytochrome P450,Biochemistry12: 258–263.

    Article  PubMed  CAS  Google Scholar 

  • Sharrock, M., Debrunner, P. G., Schulz, C., Lipscomb, J. D., Marshall, V., and Gunsalus, I. C., 1976. Cytochrome P450 and its complexes: Mossbauer parameters of the heme iron,Biochem. Biophys. Acta420: 8–26.

    PubMed  CAS  Google Scholar 

  • Simmoneaux, G., Scholtz, W. F., Reed, C. A., and Lang, G., 1982. Mossbauer spectra of unstable iron porphyrins: Models for compound II of peroxidase,Biochim. Biophys. Acta716: 1–7.

    Google Scholar 

  • Sligar, S. G., 1976. Coupling of spin, substrate, and redox equilibria in cytochrome P450,Biochemistry15: 5399–5406.

    Article  PubMed  CAS  Google Scholar 

  • Sligar, S. G., and Gunsalus, I. C., 1979. Proton coupling in the cytochrome P450 spin and redox equilibrium,Biochemistry18: 2290–2295.

    Article  PubMed  CAS  Google Scholar 

  • Sligar, S. G., Debrunner, P. G., Lipscomb, J. D., Namtvedt, M. J., and Gunsalus, I. C., 1974. A role of the putidaredoxin COOH-terminus in P450 (cytochrome M) hydroxylations,Proc. Natl. Acad. Sci. U.S.A. 71:3906–3910.

    Article  PubMed  CAS  Google Scholar 

  • Sligar, S. G., Lipscomb, J. D., Debrunner, P. G., and Gunsalus, I. C., 1974b. Superoxide anion from the autoxidation of cytochrome P450,Biochem. Biophys. Res. Commun.61: 290–296.

    Article  CAS  Google Scholar 

  • Sligar, S. G., Kennedy, K. A., and Pearson, D. C., 1980. Chemical mechanisms of cytochrome P450 hydroxylation: Evidence for acylation of heme-bound dioxygen,Proc. Natl. Acad. Sci. U.S.A.77: 1240–1244.

    Article  PubMed  CAS  Google Scholar 

  • Stern, J. O., and Peisach, J., 1974. A model compound for study of the CO-adduct of cytochrome P450,J. Biol. Chem.249: 7495–7498.

    PubMed  CAS  Google Scholar 

  • Takamuku, S., Matsumoto, H., Hori, A., and Sakurai, H., 1980. Aromatic hydroxylation by O (3P) atoms,J. Am. Chem. Soc.102: 1441–1443.

    Article  CAS  Google Scholar 

  • Tsai, R., Yu, C. A., Gunsalus, I. C., Peisach, J., Blumberg, W., Orme-Johnson, W. H., and Beinhert, H., 1970. Spin state changes in cytochrome P450 on binding of specific substrates,Proc. Nad. Acad. Sci. U.S.A.66: 1157–1163.

    Article  CAS  Google Scholar 

  • Tyson, C. A., Lipscomb, J. P., and Gunsalus, I. C., 1972. The role of putidaredoxin and P450 in methylene hydroxylations,J. Biol. Chem.247: 5777–5784.

    PubMed  CAS  Google Scholar 

  • Udenfriend, S., Zaltzman-Nirenberg, P., Daly, J., Guroff, G., Chedsey, C., and Witkop, B., 1967. Intramolecular migration of deuterium and tritium during enzymatic hydroxylation ofp-deuteroacetanilide andp-tritioacetanilide,Arch. Biochem. Biophys.120: 413–419.

    Article  PubMed  CAS  Google Scholar 

  • Ullrich, V., 1979. Cytochrome P450 and biological hydroxylation reactions,Top. Curr. Chem.83: 67–104.

    Article  PubMed  CAS  Google Scholar 

  • Welborn, C. H., Dolphin, D., and James, B. R., 1981. One-electron electrochemical reduction of a ferrous porphyrin dioxygen complex,J. Am. Chem. Soc.103: 2869–2871.

    Article  CAS  Google Scholar 

  • Whysner, J. A., Ramseyer, J. A., and Harding, B. W., 1970. Substrate-induced changes in visible absorption and electron spin resonance properties of adrenal cortex mitochondrial P450,J. Biol. Chem.245: 5441–5449.

    PubMed  CAS  Google Scholar 

  • Wilson, L. E., and Harding, B. W., 1970. Studies on adrenal cortical cytochrome P450. III. Effects of carbon monoxide and light on steroid 11B hydroxylation,Biochemistry9: 1615–1621.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Ingraham, L.L., Meyer, D.L. (1985). Cytochrome P-450. In: Biochemistry of Dioxygen. Biochemistry of the Elements, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2475-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2475-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9501-3

  • Online ISBN: 978-1-4613-2475-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics