Skip to main content

Flavin Monooxygenases

  • Chapter
  • 109 Accesses

Part of the book series: Biochemistry of the Elements ((BOTE,volume 4))

Abstract

Flavins and pteridines act as catalysts in many hydroxylation reactions, particularly those in bacterial systems. One atom of dioxygen is incorporated in the hydroxyl group and the other is reduced to water, so these enzymes are monooxygenases. Flavin monooxygenases (for a review, see Ballou, 1982) perform aromatic hydroxylations, oxidative decarboxylations, and oxidation of amines. Flavin monooxygenases are not able to hydroxylate aliphatic hydrocarbons, and most, if not all, aromatic substrates are fairly well activated by hydroxy or amino groups.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ando, W., Miyazaki, H., and Kohmoto, S., 1979. Oxygen atom transfer by an intermediate in the photosensitized oxygenation of diazo compounds, Tetrahedron Lett. 1317–1320.

    Google Scholar 

  • Ball, S., and Bruice, T.C., 1979. 4a-Hydroperoxyflavin N-oxidation of teriary amines, J. Am. Chem. Soc. 101: 4017–4019.

    Article  CAS  Google Scholar 

  • Ball, S., and Bruice, T.C., 1980. Oxidation of amines by 4a-hydroperoxyflavin, J. Am. Chem. Soc. 102: 6498–6503.

    Article  CAS  Google Scholar 

  • Ball, S., and Bruice, T.C., 1981. The chemistry of 1-carba- 1-deaza-N5-methyl lumiflavins: Influence of the N1 upon the reactivity of flavin 4a-hydroperoxides, J. Am. Chem. Soc. 103: 5494–5503.

    Article  CAS  Google Scholar 

  • Ballou, D.P., 1982. Flavin monooxygenases, Dev. Biochem. 21: 301–310.

    Article  CAS  Google Scholar 

  • Bartlett, P. D., and Traylor, T. G., 1962. Reaction of diphenyldiazomethane with oxygen: The Criegee carbonyl oxide, J. Am. Chem. Soc. 84: 3488–3409.

    Google Scholar 

  • Beaty, N. B., and Ballou, D.P., 1980. Transient kinetic study of liver microsomal FAD-containing monooxygenase, J. Biol. Chem., 255: 3817–3819.

    PubMed  CAS  Google Scholar 

  • Beaty, N. B., and Ballou, D.P., 1981. The oxidative half-reaction of liver microsomal FADcontaining monooxygenase, J. Biol. Chem. 256: 4619–4625.

    Google Scholar 

  • Chiriboga, J., 1966. Purification and properties of oxalic acid oxidase, Arch. Biochem. Biophys. 116: 516–523.

    Article  PubMed  CAS  Google Scholar 

  • Chuang, H.Y. K., Patek, D.R., and Hellerman, L., 1974. Mitochondrial monoamine oxidase inactivation by pargyline: Adduct formation, J. Biol. Chem. 249: 2381.

    PubMed  CAS  Google Scholar 

  • Detmar, K., Massey, V., Ballou, D.P., and Neujahr, H.Y., 1982. Steady state and rapid reaction studies on phenol hydroxylases, Dev. Biochem. 21: 334–338.

    Article  Google Scholar 

  • Donoghue, N.A., Norris, D. B., and Trudgill, P. W., 1976. The purification and properties of cyclohexanone oxygenase from Nocardia globerula CL I and Acinetobactor NCIB 9871, Eur. J. Biochem. 63: 175–192.

    Article  PubMed  CAS  Google Scholar 

  • Entsche, B., Massey, V., and Ballou, D.P., 1974. Intermediates in flavoprotein catalyzed hydroxylation, Biochem. Biophys. Res. Commun. 57: 1018–1026.

    Article  Google Scholar 

  • Entsche, B., Ballou, D.P., and Massey, V., 1976. Flavin-oxygen derivatives involved in hydroxylation by p-hydroxybenzoate hydroxylase, J. Biol. Chem. 251: 2550–2563.

    Google Scholar 

  • Entsche, B., Hussain, M., Ballou, D.P., Massey, V., and Walsh, C., 1980. Oxygen reactivity of p-hydroxybenzoate hydroxylase containing 1-deazaflavin, J. Biol. Chem. 255: 1420–1429.

    Google Scholar 

  • Flashner, M. I. S., and Massey, V., 1974. Purification and properties of L-lysine monooxygenase from Pseudomonas fluorescens, J. Biol., Chem. 249: 2579–2586.

    CAS  Google Scholar 

  • Frost, J.W., and Rastetter, W. H., 1981. Flavoprotein monooxygenase: A chemical model, J. Am. Chem. Soc. 103: 5242–5245.

    Article  CAS  Google Scholar 

  • Hajjar, N. P., and Hodgson, E., 1980. Flavin adenine dinucleotide-dependent monooxygenase: Its role in the sulfoxidation of pesticides in mammals, Science 209: 1134–1136.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, G. A., 1971. The proton in biological redox reactions, Prog. Bioorg. Chem. 1: 83–157.

    CAS  Google Scholar 

  • Hamilton, G. A., and Giacin, J.R., 1966. Oxidations by molecular oxygen. III. Oxidation of saturated hydrocarbons by an intermediate in the reaction of some carbenes with oxygen, J. Am. Chem. Soc. 88: 1584–1585.

    Article  CAS  Google Scholar 

  • Hamzah, R. Y., and Tu, S.-C., 1981. Determination of the position of monooxygenation in the formation of catechol catalyzed by salicylate hydroxylase, J. Biol. Chem. 256: 6392–6394.

    PubMed  CAS  Google Scholar 

  • Hayaishi, O., and Sutton, W.B., 1957. Enzymatic oxygen fixation into acetate concomitant with the enzymatic decarboxylation of L-lactate, J. Am. Chem. Soc. 79: 4809–4810.

    Article  CAS  Google Scholar 

  • Hayaishi, O., Tabor, H., and Hayaishi, T., 1957. N-Formimino-L-aspartic acid as an intermediate in the enzymatic conversion of imidazole-acetic acid to formylaspartic acid, J. Biol. Chem. 227: 161–180.

    PubMed  CAS  Google Scholar 

  • Hellerman, L., and Erwin, V.G., 1968. Mitochondrial amine oxidase. II. Action of various inhibitors for the bovine kidney enzyme catalytic mechanism, J. Biol. Chem. 243: 5234–5243.

    PubMed  CAS  Google Scholar 

  • Howell, L. G., and Massey, V., 1970. A non-substrate effector of p-hydroxybenzoate hydroxylase, Biochem. Biophys. Res. Commun. 40: 887–893.

    Article  PubMed  CAS  Google Scholar 

  • Howell, L. G., Spector, T., and Massey, V., 1972. Purification and properties of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens, J. Biol. Chem. 247: 4340–4350.

    PubMed  CAS  Google Scholar 

  • Husain, M., Schapfer, L. M., and Massey, V., 1978. p-Hydroxybenzoate hydroxylase and melilotate hydroxylase, Methods Enzymol. 53: 543–558.

    Google Scholar 

  • Itada, N., Ichihara, A., Makita, T., Hayaishi, O., Suda, M., and Sasaki, N., 1961. L-Lysine oxidase, a new oxygenase, J. Biochem. 50: 118–121.

    PubMed  CAS  Google Scholar 

  • Kamin, H., White-Stevens, R.H., and Presswood, R.P., 1978. Salicylate hydroxylase, Methods Enzymol. 53: 527–543.

    Article  PubMed  CAS  Google Scholar 

  • Katagiri, M., and Takenori, S., 1971. The Reaction mechanism of flavin-containing enzymes, in Flavins and Flavoproteins, H. Kamin (ed.), University Park Press, Baltimore, Maryland, pp. 447–462.

    Google Scholar 

  • Kemal, C., and Bruice, T.C., 1976. Simple synthesis of a 4a-hydroperoxy adduct of a 1,5dihydroflavin: Preliminary studies of a model for bacterial luciferase, Proc. Nad. Acad. Sci. U.S.A. 73: 995–999.

    Article  CAS  Google Scholar 

  • Kemal, C., Chan, T. W., and Bruice, T.C., 1977. Reaction of 302 with dihydroflavins. I. N 3,s_ Dimethyl-1,5-dihydrolumiflavin and 1,5-dihydroisoalloxazines, J. Am. Chem. Soc. 99: 7272–7286.

    Article  PubMed  CAS  Google Scholar 

  • Kirmse, W., Norner, L., and Hoffman, H., 1958. Umsetzungen photochemisch erzeugter Carbene, Annalen 614: 19–30.

    CAS  Google Scholar 

  • Kumar, R.P., Ravindranath, S. D., Vaidyanathan, C.S., and Rao, N.A., 1972. Mechanism of hydroxylation of aromatic compound. II. Evidence for the involvement of superoxide anions in enzymatic hydroxylations, Biochem. Biophys. Res. Commun. 49: 1422–1426.

    Google Scholar 

  • Lockridge, O., Massey, V., and Sullivan, P.A., 1972. Mechanism of action of the flavoenzyme lactate oxidase, J. Biol. Chem. 247: 8098–8106.

    Google Scholar 

  • Maki, Y., Yamamoto, S., Nozaki, M., and Hayaishi, O., 1966. Crystallization of imidazoleacetate monooxygenase and its characterization as a flavoprotein, Biochem. Biophys. Res. Commun. 25: 609–613.

    Article  CAS  Google Scholar 

  • Maki, T., Yamamoto, S., Nozaki, M., and Hayaishi, O., 1969. Studies of monooxygenase. II. Crystallization and some properties of imidazole and acetate monooxygenase, J. Biol. Chem. 244: 2942–2950.

    PubMed  CAS  Google Scholar 

  • Massey, V., and Hemmerich, P., 1975. Flavin and pteridine monooxygenases, in The Enzymes, Vol. 12, P. D. Boyer (ed.), Academic Press, New York, pp. 191–252.

    Chapter  Google Scholar 

  • Maycock, A. L., Abeles, R.H., Salach, J. I., and Singer, R.P., 1976. The structure of the covalent adduct formed by the interaction of 3-dimethylamino- l -propyne and the flavine of mitochondrial amine oxidase, Biochemistry 15: 114–125.

    Article  PubMed  CAS  Google Scholar 

  • McIntire, W., Edmondson, D. F., and Singer, T.P., 1980. 8α-O-Tryosyl-FAD: A new form of covalently bound flavin from p-cresol methyl hydroxylase, J. Biol. Chem. 255: 6553–6555.

    PubMed  CAS  Google Scholar 

  • McIntire, W., Edmondson, D. E., Hopper, D. J., and Singer, T.P., 1981. 8a-(0-Tyrosyl) flavin adenine dinucleotide, the prosthetic group of bacterial p-cresol methylhydroxylase, Biochemistry 20: 3068–3075.

    Google Scholar 

  • Nakazawa, T., Hori, K., and Hayaishi, O., 1972. Studies on monooxygenases. V. Manifestation of amino acid oxidase activity by L-lysine monooxygenase, J. Biol. Chem. 247: 3439–3444.

    PubMed  CAS  Google Scholar 

  • Nanni, E. J., Jr., Sawyer, D. T., Ball, S. S., and Bruice, T.C., 1981. Redox chemistry of N5-ethyl-3-methyl-lumiflavinium cation and NS-ethyl-4a-hydroperoxy-3-methyllumiflavin in dimethylformamide: Evidence for the formation of the Ns-ethyl-4a-hydroperoxy-3-methyllumiflavin anion via radical-radical coupling with superoxide ion, J.-Am. Chem. Soc. 103: 2797–2802.

    Article  CAS  Google Scholar 

  • Neujahr, H.Y., and Gaal, A., 1973. Phenol hydroxylase from yeast: Purification and properties of the enzyme from Trichosporon cutaneum, Ev. J. Biochem. 35: 386–400.

    Article  CAS  Google Scholar 

  • Okamoto, H., Nozaki, M., and Hayaishi, O., 1968. A role of sulfhydryl groups in imidazoleacetate monooxygenase, Biochem. Biophys. Res. Commun. 32: 30–36.

    Article  PubMed  CAS  Google Scholar 

  • Orf, H. W., and Dolphin, D., 1974. Oxaziridines as possible intermediates in flavin monooxygenases, Proc. Nad. Acad. Sci. U.S.A. 71: 2646–2650.

    Article  CAS  Google Scholar 

  • Ortha, Y., and Ribbons, D.W., 1970. Crystallization of orcinol hydroxylase from Pseudomonas putida, FEES Lett. 2: 189–192.

    Google Scholar 

  • Paulsen, L. L., and Ziegler, D.M., 1979. The liver microsomal FAD-containing monooxygenase, J. Biol. Chem. 254: 6449–6455.

    Google Scholar 

  • Pho, D. B., Olomucki, A., and Thoai, N.V., 1966. L-Arginine oxygenase decarboxylante. IV. Incorporation de 18O dans la -y-guanidino-butryamide, Biochim. Biophys. Acta 118: 311–315.

    PubMed  CAS  Google Scholar 

  • Premkumar, R., Roa, R. V. S., Sreeleela, N. S., and Vaidyanathan, C.S., 1969. m-Hydroxybenzoic acid 4-hydroxylase from Asperigillus niger, Can. J. Biochem. 47: 825–827.

    Article  PubMed  CAS  Google Scholar 

  • Rastetter, W. H., Gadek, T. R., Tane, J. P., and Frost, J.W., 1979. Oxidations and oxygen transfers effected by a flavin N(5)-oxide: A mode for flavin-dependent monooxygenases, J. Am. Chem. Soc. 101: 2228–2231.

    Google Scholar 

  • Rothberg, S., and Hayaishi, O., 1957. Studies on oxygenases: Enzymatic oxidation of imidazoleacetic acid, J. Biol. Chem. 229: 897–903.

    PubMed  CAS  Google Scholar 

  • Ryerson, R. R., Ballou, D.P., and Walsh, C. 1982. Kinetic isotope effects in the oxidation of isotopically labeled NAD(P)H by bacterial flavoprotein monooxygenases, Biochemistry 21: 1144–1151.

    Article  PubMed  CAS  Google Scholar 

  • Schopfer, L. M., and Massey, V., 1980. Kinetic and mechanistic studies on the oxidation of the melilotate hydroxylase 2-OH-cinnamate complex by molecular oxygen, J. Biol. Chem. 255: 5355–5363.

    PubMed  CAS  Google Scholar 

  • Schwab, J. M., 1981. Stereochemistry of an enzymatic Baeyer-Villiger reaction: Application of deuterium NMR, J. Am. Chem. Soc. 103: 1876–1879.

    Google Scholar 

  • Shoun, H., and Beppu, T., 1982. A histidine residue in p-hydroxybenzoate hydroxylase essential for binding of reduced nicotinamide adenine dinucleotide phosphate, J. Biol. Chem. 257: 3422–3428.

    PubMed  CAS  Google Scholar 

  • Shoun, H., Beppu, T., and Arima, K., 1980. An essential arginine residue at the substrate-binding site of p-hydroxybenzoate hydroxylase, J. Biol. Chem. 255: 9319–9324.

    Google Scholar 

  • Spector, T., and Massey, V., 1972a. p-Hydroxybenzoate hydroxylase from Pseudomonas fluorescens: Evidence for an oxygenated flavin intermediate, J. Biol. Chem. 247: 5632–5636.

    PubMed  CAS  Google Scholar 

  • Spector, T., and Massey, V., 1972b. Studies on the effector specificity of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens, J. Biol. Chem. 247: 6479–6487.

    Google Scholar 

  • Spector, T., and Massey, V., 1972c. p-Hydroxybenzoate hydroxylase from Pseudomonas fluorescens: Reactivity with oxygen, J. Biol. Chem. 247: 7123–7127.

    PubMed  CAS  Google Scholar 

  • Steenis, P. G., Cordes, M. M., Hilkens, G.-H., and Muller, F., 1973. On the interaction of parahydroxybenzoate hydroxylase from Pseudomonas fluorescens with halogen ions, FEES Lett. 36: 177–180.

    Article  Google Scholar 

  • Strickland, S., and Massey, V., 1973. The purification and properties of the flavoprotein melilotate hydroxylase, J. Biol. Chem. 248: 2944–2952.

    PubMed  CAS  Google Scholar 

  • Strickland, S., and Massey, V., 1973b. The mechanism of action of the flavoprotein melilotate hydroxylase, J. Biol. Chem. 248: 2953–2962.

    PubMed  CAS  Google Scholar 

  • Strickland, S., Schopfer, L. M., and Massey, M., 1975. Kinetics and mechanistic studies on the reaction of melilotate hydroxylase with deuterated melilotate, Biochemistry 14: 2230–2235.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, K., and Katagiri, M., 1981. Mechanism of salicylate hydroxylase-catalyzed decarboxylation, Biochim. Biophys. Acta 657: 530–534.

    Google Scholar 

  • Takeda, H., Yamamoto, S., Kojima, V., and Hayaishi, O., 1969. Studies on monooxygenases. I. General properties of crystalline L-lysine monooxygenase, J. Biol. Chem. 244: 2935–2941.

    PubMed  CAS  Google Scholar 

  • Takemori, S., Nakamura, M., Suzuki, K., Katagiri, M., and Nakamura, T., 1972. Mechanism of the salicylate hydroxylase reactioN.V. Kinetic analysis, Biochim. Biophys. Acta 284: 382–393.

    PubMed  CAS  Google Scholar 

  • Tokumura, K., Goto, H., Kashiwabara, H., Kaneko, C., and Itoh, H., 1980. Formation and reaction of oxaziridine intermediate in the photochemical reaction of 6-cyano phenanthridine 5-oxide at low temperature, J. Am. Chem. Soc. 102: 5643–5647.

    Article  CAS  Google Scholar 

  • Walsh, C. T., Schonbrun, A., Lockridge, O., Massey, V., and Abeles, R.H., 1972. Inactivation of a flavoprotein lactate oxidase by an acetylenic substrate, J. Biol. Chem. 247: 6004–6006.

    PubMed  CAS  Google Scholar 

  • Walsh, C. T., Lockridge, 0., Massey, V., and Abeles, R.H., 1973. Studies on the mechanism of action of the flavoenzyme lactic oxidase: Oxidation and elimination with R-chloroacetate, J. Biol. Chem. 248: 7049–7054.

    Google Scholar 

  • Wang, L.-H., Hamzah, R.H., and Tu, S.C., 1982. On the mechanism of salicylate hydroxylase: Studies using deuterated substrates, Dev. Biochem. 21: 346–349.

    Google Scholar 

  • Wessiak, A., and Bruice, T.C., 1981. On the nature of the intermediate between 4a-hydroperoxyflavin and 4a-hydroxyflavin in the hydroxylation reaction of p-hydroxybenzoate hydroxylase: Synthesis of 6-aminopyrimidine-2,4,5(34)-triones and the mechanism of aromatic hydroxylation by flavin monooxygenases, J. Am. Chem. Soc. 103: 6996–6998.

    Google Scholar 

  • White-Stevens, R.H., and Kamin, H., 1972. Studies of a flavoprotein: Salicylate hydroxylase. II. Enzyme mechanism, J. Biol. Chem. 247: 2371–2381.

    Google Scholar 

  • Wierenga, R. K., de Jong, R. J., Kalk, K. H., Hol, W. G. J., and Drenth, J., 1979. Crystal structure of p-hydroxybenzoate hydroxylase, J. Mol. Biol. 131: 55–73.

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi, T., Yamamoto, S., and Hayaishi, O., 1973. Reversible conversion of lysine monooxygenase to an oxidase by modification of sulfhydryl groups, J. Biol. Chem. 248: 3750–3752.

    PubMed  CAS  Google Scholar 

  • Yamamoto, S., Nakazawa, T., and Hayaishi, O., 1972. Studies on monooxygenases. IV. Anaerobic formation of an α-keto acid by L-lysine monooxygenase, J. Biol. Chem. 247: 3434–3438.

    Google Scholar 

  • Ziegler, D.M., and Mitchell, C.H., 1972. Microsomal oxidase. IV. Properties of a mixed-function amine oxidase isolated from pig liver microsomes, Arch. Biochem. Biophys. 150: 116–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Ingraham, L.L., Meyer, D.L. (1985). Flavin Monooxygenases. In: Biochemistry of Dioxygen. Biochemistry of the Elements, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2475-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2475-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9501-3

  • Online ISBN: 978-1-4613-2475-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics