Advertisement

Neuronal and Glial Surface Antigens on Cells in Culture

  • Kay Fields
Part of the Current Topics in Neurobiology book series (CTNB)

Abstract

This review will emphasize cell surface antigenic markers and practically ignore work with most of the described cytoplasmic antigens, simply because this field is growing so fast that it is impractical to try to cover all the new antigens. The emphasis here is on antigens that have been used with success in cultures of the nervous system.

Keywords

Schwann Cell Dorsal Root Ganglion Neuron Cholera Toxin Retinal Cell Neural Cell Adhesion Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abney, E. R., Bartlett, P. P., and Raff, M. C., 1981, Astrocytes, ependymal cells, and oligodendrocytes develop on schedule in dissociated cell cultures of embryonic rat brain, Develop. Biol 83: 301–310.PubMedGoogle Scholar
  2. Abney, E. R., Williams, B. P., and Raff, M. C., 1983, Tracing the development of oligodendrocytes from precursor cells using monoclonal antibodies, fluorescence activated cell sorting and cell culture, Develop. Biol 100: 166–171.PubMedGoogle Scholar
  3. Akagawa, K., Barnstable, C. J., and Hofstein, R., 1983, Identification of cell types in the cultures of rat retina using monoclonal antibodies, J. Neurochem. 41(Suppl.): 137B.Google Scholar
  4. Akeson, R., and Hsu, W., 1978, Identification of a high molecular weight nervous system specific cell surface glycoprotein on murine neuroblastoma cells, Exp. Cell Res 115: 367–377.PubMedGoogle Scholar
  5. Antanitus, D. S., Choi, B. H., and Lapham, L. W., 1975, Immunofluorescence staining of astrocytes in vitrousing antiserum to filial fibrillary acidic protein, Brain Res 89: 363–367.PubMedGoogle Scholar
  6. Barald, K., 1982, Monoclonal antibodies to embryonic neurons: Cell-specific markers for chick ciliary ganglion, in: Neuronal Development( N. C. Spitzer, ed.), Plenum Press, New York, pp. 101–120.Google Scholar
  7. Barald, K. F., 1983, Monoclonal antibodies in chick ciliary ganglion isolate a neural crest subpopulation by fluorescence activated cell sorting, Soc. Neurosci. Abstr 9: 103.2.Google Scholar
  8. Barber, P. C., and Lindsay, R. M., 1982, Schwann cells of the olfactory nerves contain glial fibrillary acidic protein and resemble astrocytes, Neuroscience, 7: 3077–3090.PubMedGoogle Scholar
  9. Barnstable, C. J., 1980, Monoclonal antibodies that recognize different cell types in the rat retina, Nature 286: 231–235.PubMedGoogle Scholar
  10. Barnstable, C. J., 1982, Immunological studies of the retina, in: Neuroimmunology( J. Brockes, ed.), Plenum Press, New York, pp. 183–214.Google Scholar
  11. Barnstable, C. J., Akagawa, K., Hofstein, R., and Horn, J. P., 1983, Monoclonal antibodies that label discrete cell types in the mammalian nervous system, Cold Spring Harbor Symp. Quant. Biol 48: 863–876.PubMedGoogle Scholar
  12. Bartlett, P. F., 1983, Oligodendrocyte function studied in vitro, in: Molecular Aspects of Neurological Disorders( P. L. Austin and P. L. Jeffrey, eds.), Academic Press, New York, pp. 211–220.Google Scholar
  13. Bartlett, P. F., Noble, M. D., Puss, R. M., Raff, M. C., Rattray, S., and Williams, C. A., 1981, Rat neural antigen-2 (RAN-2)—A cell surface antigen on astrocytes, ependymal cells, Muller cells and leptomeninges defined by a monoclonal antibody, Brain Res 204: 339–351.PubMedGoogle Scholar
  14. Beale, R., and Osborn, N. N., 1982, Localization of the Thy-1 antigen to the surfaces of rat retinal ganglion cells, Neurochem. Int 4: 587–595.PubMedGoogle Scholar
  15. Beale, R., Nicolas, D., Neohoff, V., and Osborn, N. N., 1982, The binding of tetanus toxin to retinal cells, Brain Res 248: 141–149.PubMedGoogle Scholar
  16. Berg, G. J., and Schachner, M., 1981, Immunoelectronmicrscopic identification of O antigen bearing oligodendroglial cells in vitro, Cell Tissue Res 219: 313–325.PubMedGoogle Scholar
  17. Berg, G. J., and Schachner, M., 1982, Electron microscopic localization of A2B5 cell surface antigen in monolayer cultures of mouse cerebellum, Cell Tissue Res 224: 637–645.PubMedGoogle Scholar
  18. Bhat, S., Barbarese, E., and Pfeiffer, S. E., 1981, Requirement for non-oligodendrocyte cell signals for enhanced myelinogenic gene expression in long term cultures of purified oligodendrocytes, Proc. Natl. Acad. Sci. USA 78: 1283–1287.PubMedGoogle Scholar
  19. Bock, E., 1978, Nervous system specific proteins, J. Neurochem 30: 4–14.Google Scholar
  20. Bock, Yavin, Z., Jørgensen, O. S., and Yavin, E., 1980, Nervous system-specific proteins in developing rat cerebral cells in culture, J. Neurosci 35: 1297–1302.Google Scholar
  21. Brackenbury, R., Thiery, J.-P., Rutishauser, U., and Edelman, G. M., 1977, Adhesion among neural cells of the chick embryo. I. An immunological assay for molecules involved in cell-cell binding, J. Biol. Chem 252: 6835–6840.PubMedGoogle Scholar
  22. Brackenbury, R., Rutishauser, U., and Edelman, G. M., 1981, Distinct calcium-independent and calcium-dependent adhesion systems of chicken embryo cells, Proc. Natl. Acad. Sci. USA 78: 387–391.PubMedGoogle Scholar
  23. Brady, R. O., 1981, Sphingolipidoses and other lipid metabolic disorders, in: Basic Neurochemistry, 3rd ed. ( G. J. Siegel, R.W. Albers, B.W. Agranoff, and R. Katzman, eds.), Little, Brown, Boston, pp. 615–626.Google Scholar
  24. Brockes, J. (ed.), 1982, Neuroimmunology, Plenum Press, New York.Google Scholar
  25. Brockes, J. P., Fields, K. L., and Raff, M. C., 1977, A surface antigenic marker for rat Schwann cells, Nature 266: 364–366.PubMedGoogle Scholar
  26. Buskirk, D. R., Thiery, J. P., Rutishauser, U., and Edelman, G. M., 1980, Antibodies to a neural cell adhesion molecule disrupt histogenesis in cultured chick retinae, Nature 285: 488–489.PubMedGoogle Scholar
  27. Chiu, F.-C., Norton, W. T., and Fields, K. L., 1981, The cytoskeleton of primary astrocytes in culture contains actin, glial fibrillary acidic protein, and the fibroblast-type filament protein, vimentin, J. Neurochem 37: 147–155.PubMedGoogle Scholar
  28. Chun, L. L. Y., Patterson, P. H., and Cantor, H., 1980, Preliminary studies on the use of monoclonal antibodies as probes for sympathetic development, J. Exp. Biol 89: 73–83.PubMedGoogle Scholar
  29. Chuong, C.-M., McClain, D.A., Streit, P., and Edelman, G. M., 1982, Neural cell adhesion molecules in rodent brains isolated by monoclonal antibodies with cross-species reactivity, Proc. Natl. Acad. Sci. USA 79: 4234–4238.PubMedGoogle Scholar
  30. Cochran, F. B. Yu, R. K., and Ledeen, R. W., 1982, Myelin gangliosides in vertebrates, J. Neurochem 39: 773–779.PubMedGoogle Scholar
  31. Cohen, J., and Selvendran, S. Y., 1981, A neuronal cell surface antigen is found in the CNS but not in peripheral neurones, Nature 291: 421–423.PubMedGoogle Scholar
  32. Cornbrooks, C. J., and Bunge, R.P., 1982, A cell-surface specific monoclonal antibody to, differentiating Schwann cells, Trans. Am. Soc. Neurochem 13: 171.Google Scholar
  33. Cornbrooks, C. J., Carey, D. J., McDonald, J. A., Timpl, R., and Bunge, R. P., 1983, In vivoand in vitroobservations on laminin production by Schwann cells, Proc. Natl. Acad. Sci. USA 80: 3850–3854.PubMedGoogle Scholar
  34. Crisanti-Combes, P., Lorinet, A. M., Girard, A., Pessac, B., Wasseff, M., and Colothy, G., 1982, Expression of neuronal markers in chick and quail embryo neuroretina cultures infected with Rous sarcoma virus, Cell Differ 11: 45–54.PubMedGoogle Scholar
  35. deBaecque, C., Johnson, A., Naiki, M., Schwarting, G., and Marcus, D. M., 1976, Ganglioside location in cerebellar cortex: An immunoperoxidase study with antibody to GM1 ganglioside, Brain Res 114: 117–122.Google Scholar
  36. Dickson, J. G., Flanigan, T. P., and Walsh, F. S., 1982, Cell surface antigens of human fetal brain and dorsal root ganglion cells in tissue culture, in: Human Motor Neuron Diseases( L. P. Rowland, ed.), Raven Press, New York, pp. 435–451.Google Scholar
  37. Dickson, J. G., Flanigan, T. P., Kemshead, J. T., Doherty, P., and Walsh, F. S., 1983, Identification of cell-surface antigens present exclusively on a sub-population of astrocytes in human foetal brain cultures, J. Neuroimmunol 5: 111–123.PubMedGoogle Scholar
  38. Dimpfel, W., Neale, J. H., and Habermann, E., 1975, 125I-labelled tetanus toxin as a neuronal marker on tissue cultures derived from embryonic CNS, Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 290:329–333.Google Scholar
  39. Dimpfel, W., Huang, R. T. C., and Habermann, E., 1977, Gangliosides in nervous tissue cultures and binding of 125I-labelled tetanus toxin, a neuronal marker, J. Neurochem 29: 329–334.PubMedGoogle Scholar
  40. Dreyfus, H., Louis, J. C., Harth, S., and Mandel, P., 1980, Gangliosides in cultured neurons, Neuroscience 5: 1647–1655.PubMedGoogle Scholar
  41. Dulbecco, R., Unger, M., Bologna, M., Battifora, H., Syka, P., and Okada, S., 1981, Cross-reactivity between Thy-1 and a component of intermediate filaments demonstrated using a monoclonal antibody, Nature 292: 772–774.PubMedGoogle Scholar
  42. Edelman, G., 1983, Cell adhesion molecules, Science 219: 450–457.PubMedGoogle Scholar
  43. Edelman, G. M., and Chuong, C.-M., 1982, Embryonic to adult conversion of neural cell adhesion molecules in normal and staggerer mice, Proc. Natl. Acad. Sci. USA 79: 7036–7040.PubMedGoogle Scholar
  44. Eisenbarth, G. S., Walsh, F. S., and Nirenberg, M., 1979, Monoclonal antibody to a plasma membrane antigen of neurons, Proc. Natl. Acad. Sci. USA 76: 1286–1300.Google Scholar
  45. Eisenbarth, G. S., Shimazu, K., Conn, M., Mittler, R., and Wells, S., 1981, Monoclonal antibody F12A2B5: Reaction with a plasma membrane antigen of vertebrate neurons and peptide-secreting endocrine cells, in: Monoclonal Antibodies to Neural Antigens( R. McKay, M. C. Raff, and L. F. Reichardt, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 209–218.Google Scholar
  46. Fekete, D. M., and Barnstable, C. J., 1983, Subcellular localization of rat photoreceptorspecific antigens, J. Neurocytol 12: 785–803.PubMedGoogle Scholar
  47. Fields, K. L., 1977, Biochemical studies of the common and restricted antigens, two neural cell surface antigens, Prog. Clin. Biol. Res 15: 179–190.PubMedGoogle Scholar
  48. Fields, K. L., 1983a, Differentiated Schwann cells cultured from adult sciatic nerves contain astrocyte-type intermediate filaments, Soc. Neurosci. Abstr. 9: 5. 6.Google Scholar
  49. Fields, K. L., 1983b, Monoclonal antibodies binding to subsets of rat neurons in cell cultures, J. Neurochem 41 Suppl.: S147.Google Scholar
  50. Fields, K. L., and Raine, C. S., 1985, A Monoclonal antibody equivalent to anti-Ran-1 as a marker for Schwann cells, Neuroscience (in press).Google Scholar
  51. Fields, K. L., and Raine, C. S., 1982, Ultrastructure and immunocytochemistry of rat Schwann cells and fibroblasts in vitro, J. Neuroimmunol 2: 155–166.PubMedGoogle Scholar
  52. Fields, K. L., Gosling, C., Megson, M., and Stern, P. L., 1975, New cell surface antigens in rat defined by tumors of the nervous system, Proc. Natl. Acad. Sci. USA 72: 1286–1300.Google Scholar
  53. Fields, K. L., Brockes, J. P., Mirsky, R., and Wendon, L. M. B., 1978, Cell surface antigenic markers for distinguishing different types of rat dorsal root ganglion cells in culture, Cell 14: 43–51.PubMedGoogle Scholar
  54. Fields, K. L., Currie, D. N., and Dutton, G. R., 1982, Thy-1 and GABA autoradiography on cerebellar cells in culture, J. Neurosci 2: 663–673.PubMedGoogle Scholar
  55. Finne, J., Finne, U., Deagostini-Bazin, H., and Goridis, C., 1983, Occurrence of α2-8 linked polysialosyl units in a neural cell adhesion molecule, Biochem. Biophys. Res. Commun 112: 482–487.PubMedGoogle Scholar
  56. Fishman, P. H., and Brady, R. O., 1976, Biosynthesis and function of gangliosides, Science 194: 904–915.Google Scholar
  57. Franklin, C. F., and Gruol, D. L., 1983, Immunohistochemical identification of developing Purkinje neurons in cultures of rat cerebellum, Soc. Neurosci. Abstr 9: 88. 9.Google Scholar
  58. Fredman, P., Magnani, J. L., Nirenberg, M., and Ginsberg, V., 1984, Monoclonal antibody A2B5 reacts with many gangliosides in neuronal tissue, Arch. Biochem. Biophys 233: 661–666.PubMedGoogle Scholar
  59. Fry, J. M., Weissbarth, S., Lehrer, G. M., and Bornstein, M. B., 1974, Cerebroside antibody inhibits sulfatide synthesis and myelination and demyelinates in cord tissue culture, Science 183: 540–542.PubMedGoogle Scholar
  60. Fryxell, K. J., 1980, Synthesis of sulfatide by cultured Schwann cells, J. Neurochem 35: 1461–1464.PubMedGoogle Scholar
  61. Ganser, A. L., Kirschner, D. A., and Willinger, M., 1983, Ganglioside localization on myelinated nerve fibers by cholera toxin binding, J. Neurocytol 12: 921–938.PubMedGoogle Scholar
  62. Giotta, G. J., Heitzmann, J., and Cohn, M., 1982, Immunological identification of cerebellar cell lines, Develop. Brain Res 4: 209–222.Google Scholar
  63. Goridis, C., Joher, M. A., Hirsch, M., and Schachner, M., 1978, Cell surface proteins of cultured brain cells and their recognition by anti-cerebellum (anti-NS-4) antiserum, J. Neurochem 31: 531–539.PubMedGoogle Scholar
  64. Gregson, N. A., 1981, Studies with anti-ganglioside antibodies, in: Chemisms of the Brain( R. Rodnight, H. S. Bachelard, and W. L. Stahl, eds.), Churchill Livingstone, Edinburgh, pp. 167–175.Google Scholar
  65. Gregson, N. A., and Hammer, C. T., 1980, Antibodies against defined nerve cell components: Gangliosides, J. R. Soc. Med 73: 501–504.PubMedGoogle Scholar
  66. Gregson, N. A., and Hammer, C. T., 1982, Some immunological properties of antisera raised against the trisialoganglioside GT1b, Mol. Immunol 19: 543–550.PubMedGoogle Scholar
  67. Gregson, N. A., Kennedy, M., and Liebowitz, S., 1977, Gangliosides as surface antigens on cells isolated from the rat cerebellar cortex, Nature 277: 461–463.Google Scholar
  68. Grumet, M., Hoffman, S., and Edelman, G. M., 1984, Two antigenically related neuronal cell adhesion molecules of different specificities mediate neuron-neuron and neuronglia adhesion, Proc. Natl. Acad. Sci. USA 81:267–271.PubMedGoogle Scholar
  69. Grunwald, G. B., Trisler, D., and Nirenberg, M., 1983, Monoclonal antibodies with regional specificity in the nervous system, Soc. Neurosci. Abstr. 9: 203.19.Google Scholar
  70. Gruol, D. L., 1983, Cultured cerebellar neurons: Endogenous and exogenous components of Purkinje cell activity and membrane response to putative transmitters, Brain Res 263: 223–241.PubMedGoogle Scholar
  71. Hakomori, S.-I., 1984, Monoclonal antibodies directed to cell surface carbohydrates, in: Monoclonal Antibodies and Functional Cell Lines( R. H. Kennett, K. B. Bechtol, and T. J. McKearn, eds.), Plenum Press, New York.Google Scholar
  72. Henke-Fahle, S., and Bonhoeffer, F., 1983, Inhibition of axonal growth by a monoclonal antibody, Nature 303: 65–67.PubMedGoogle Scholar
  73. Hirn, M., Pierres, M., Deagostini-Bazin, H., Hirsch, M., and Goridis, C., 1981, Monoclonal antibody against cell surface glycoprotein of neurons, Brain Res 214: 433–439.PubMedGoogle Scholar
  74. Hirn, M., Ghandour, M. S., Deagostini-Bazin, H., and Goridis, C., 1983, Molecular heterogeneity and structural evolution during cerebellar ontogeny detected by monoclonal antibody of the mouse cell surface antigen BSP-2, Brain Res 265: 87–100.PubMedGoogle Scholar
  75. Hoffman, S., and Edelman, G. M., 1983, Kinetics of homophilic binding by embryonic and adult forms of the neural cell adhesion molecule, Proc. Natl. Acad. Sci. USA 80: 5762–5766.PubMedGoogle Scholar
  76. Hoffman, S., Sorkin, B. C., White, P. C., Brackenbury, R., Mailhammer, R., Rutishauser, U., Cunningham, B. A., and Edelman, G. M., 1982, Chemical characterization of a neural cell adhesion molecule purified from embryonic brain membranes, J. Biol. Chem 257: 7720–7729.PubMedGoogle Scholar
  77. Hogg, N., 1983, Human monocytes are associated with the formation of fibrin, J. Exp. Med 157: 473–485.PubMedGoogle Scholar
  78. Hogg, N., Slusarenko, M., Cohen, J., and Reiser, J., 1981, Monoclonal antibody with specificity for monocytes and neurons, Cell 24: 875–884.PubMedGoogle Scholar
  79. Holmgren, J., Elwing, H., Fredman, P., Strannegard, O., and Svennerholm, L., 1980, Gangliosides as receptors for bacterial toxins and Sendai virus, Adv. Exp. Med. Biol 125: 453–470.PubMedGoogle Scholar
  80. Huber, G., and Matus, A., 1984, Differences in the cellular distributions of two microtubule-associated proteins, MAP1 and MAP2, in rat brain, J. Neurosci 4: 151–160.PubMedGoogle Scholar
  81. Jessen, K., and Mirsky, R., 1980, Glial cells in the enteric nervous system contain glial fibrillary acidic protein, Nature 286: 736–738.PubMedGoogle Scholar
  82. Jessen, K. R., and Mirsky, R. 1983, Astrocyte-like glia in the peripheral nervous system: An immunohistochemical study of enteric glia, J. Neurosci 3: 2206–2218.PubMedGoogle Scholar
  83. Jones, R. T., Walker, J. H., Richardson, P. J., Fox, G. Q., and Whittaker, V. P., 1981, Immunohistochemical localization of cholinergic nerve terminals, Cell Tissue Res 218: 355–373.PubMedGoogle Scholar
  84. Jørgensen, O. S., 1979, Polypeptides of the synaptic membrane antigens D1, D2, and D3, Biochim. Biophys Acta 581: 153–162.PubMedGoogle Scholar
  85. Jørgensen, O. S., and Bock, E., 1974, Brain specific synaptosomal membrane proteins demonstrated by crossed immunoelectrophoresis, J. Neurochem 23: 879–880.PubMedGoogle Scholar
  86. Jørgensen, O. S., and Møller, M., 1980, Immunocytochemical demonstration of the D2 protein in the presynaptic complex, Brain Res 194: 419–429.PubMedGoogle Scholar
  87. Jørgensen, O. S., and Møller, M., 1983, A testis antigen related to the brain D2 adhesion protein, Develop. Biol 100: 275–286.PubMedGoogle Scholar
  88. Jørgensen, O. S., Delouvee, A., Thiery, J.-P., and Edelman, G. M., 1980, The nervous system specific protein D2 is involved in adhesion among neurites from cultured rat ganglia, FEBS Lett. 111: 39–42.PubMedGoogle Scholar
  89. Karpiak, S. E., Mahadik, S. P., Graf, L., and Rapport, M. M., 1981, An immunological model of epilepsy: Seizures induced by antibodies to GM1 ganglioside, Epilepsia 22: 189–196.PubMedGoogle Scholar
  90. Kasai, N., and Yu, R. K., 1983, The monoclonal antibody A2B5 is specific to ganglioside GQ1c, Brain Res 277: 155–158.PubMedGoogle Scholar
  91. Kohn, L. D., Consiglio, E., DeWolf, M. S., Grollman, E. F. Ledley, F. D., Lee, G., and Morris, N. P., 1980, Thyrotropin receptors and gangliosides, Adv. Exp. Med. Biol 125: 487–502.PubMedGoogle Scholar
  92. Koulakoff, A., Bizzini, B., and Berwald-Netter, Y., 1982, A correlation between the appearance and the evolution of tetanus toxin binding cells and neurogenesis, Develop. Brain Res 5: 139–147.Google Scholar
  93. Koulakoff, A., Bizzini, B., and Berwald-Netter, Y., 1983, Neuronal acquisition of tetanus toxin binding sites: Relationship with the last mitotic cycle, Develop. Biol 100: 350–357.PubMedGoogle Scholar
  94. Kreider, B. Q., Messing, A., Doan, H., Kim, S. U., Lisak, R. P., and Pleasure, D. E., 1981, Enrichment of Schwan cell cultures from neonatal rat sciatic nerve by differential adhesion, Brain Res 207: 433–444.PubMedGoogle Scholar
  95. Kushner, P. D., 1984, A library of monoclonal antibodies to Torpedocholinergic synaptosomes, J. Neurochem 43: 775–786.PubMedGoogle Scholar
  96. Lacetti, P., Tombaccini, D., Aloj, S., Grollman, E. F., and Kohn, L. D., 1984, Gangliosides, the thyrotropin receptor, and autoimmune thyroid disease in: Ganglioside Structure, Function, and Biomedical Potential (R. W. Ledeen, R. K. Yu, M. M. Rapport, and K. Suzuki, eds.), Plenum Press, New York, pp. 355–367.Google Scholar
  97. Lagenaur, C., Schachner, M., Solter, D., and Knowles, B., 1982, Monoclonal antibody against SSEA-1 is specific for a subpopulation of astrocytes in mouse cerebellum, Neurosci. Lett 31: 181–184.PubMedGoogle Scholar
  98. Lander, A. D., Tomaselli, K., Calof, A. L., and Reichardt, L. F., 1983, Studies on extracellular matrix components that promote neurite outgrowth, Cold Spring Harbor Symp. Quant. Biol 48: 611–623.PubMedGoogle Scholar
  99. Lasher, R.S., 1974, The uptake of [3H]GABA and differentiation of stellate neurons in cultures of dissociated newborn rat cerebellum, Brain Res 69: 235–254.PubMedGoogle Scholar
  100. Ledeen, R. W., Yu, R. K., and Eng, L. F., 1973, Gangliosides of human myelin: Sialosylgalactosylceramide (G7) as amajor component, J. Neurochem 21: 829–839.PubMedGoogle Scholar
  101. Ledeen, R.W., Yu, R.K., Rapport, M.M., and Suzuki, K. (eds.), 1984, Ganglioside Structure, Function and Biomedical Potential, Plenum Press, New York.Google Scholar
  102. Lee, V. M., Greene, L.A., and Shelanski, M. L., 1981, Identification of neural and adrenal medullary surface membrane glycoproteins recognized by antisera to cultured rat sympathetic neurons and PC12 pheochromocytoma cells, Neuroscience 6: 2773–2786.PubMedGoogle Scholar
  103. Leifer, D., Lipton, S. A., and Barnstable, C. J., 1983, A monoclonal antibody to Thy-1 enhances process regeneration by differentiated rat retinal ganglion cells in culture, Soc. Neurosci. Abstr 9: 5. 10.Google Scholar
  104. Liesi, P., Dahl, D., and Vaheri, A., 1983, Laminin is produced by early rat astrocytes in primary culture, J. Cell Biol 96: 920–924.PubMedGoogle Scholar
  105. Lietze, R., and Unsicker, K., 1983, Tetanus toxin binding to different morphological phenotypes of cultured rat and bovine adrenal medullary cells, Neurosci. Lett 38: 233–238.Google Scholar
  106. Lohmann, S. M., Walter, U., Miller, P. E., Greengard, P., and DeCamilli P., 1981, Immunohistochemical localization of cyclic GMP-dependent protein kinase in mammalian brain, Proc. Natl. Acad. Sci. USA. 78: 653–657.PubMedGoogle Scholar
  107. McCarthy, K.D., and de Vellis, J., 1980, Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue, J. Cell Biol 85: 890–902.PubMedGoogle Scholar
  108. McGarvey, M. N., Baron-Van Evercooren, A., Kleinman, H. K., and Dubois-Dalcq, M., 1984, Synthesis and effects of basement membrane components in cultured rat Schwann cells, Develop. Biol 105: 18–28.PubMedGoogle Scholar
  109. McGuire, J.C., Greene, L. A., and Furano, A. V., 1978, NGF stimulates incorporation of fucose or glucosamine into an external glycoprotein in cultured rat PC12 pheochromocytoma cells, Cell 15: 357–365.PubMedGoogle Scholar
  110. Marangos, P. J., Polak, J.M., and Pearse, A.G.E., 1982, Neuron-specific enolase, a probe for neurons and neuroendocrine cells, Trends Neurosci 5: 193–196.Google Scholar
  111. Mason, D. W., and Williams, A. F., 1980, The kinetics of antibody binding to membrane antigens in solution and at the cell surface, Biochem. J 187: 1–20.PubMedGoogle Scholar
  112. Meier, D., and Schachner, M., 1982, Immunoselection of oligodendrocytes by magnetic beads. II. In vitro maintenance of immunoselected oligodendrocytes, J. Neurosci. Res 7: 135–145.PubMedGoogle Scholar
  113. Mirsky, R., 1982, The use of antibodies to define and study major cell types in the central and peripheral nervous system, in: Neuroimmunology( J. Brockes, ed.), Plenum Press, New York, pp. 141–181.Google Scholar
  114. Mirsky, R., Wendon, L. M. B., Black, P., Stolkin, C., and Bray, D., 1978, Tetanus toxin: A cell surface marker for neurons in culture, Brain Res 148: 251–259.PubMedGoogle Scholar
  115. Mirsky, R., Winter, J., Abney, E. R., Pruss, R. M., Gavrilovic, J., and Raff, M. C., 1980, Myelin-specific proteins and glycolipids in rat Schwann cells and oligodendrocytes in culture, J. Cell Biol 84: 483–494.PubMedGoogle Scholar
  116. Morris, R. J., 1982, The surface antigens of nerve cells, in: Neuroscience Approached Through Cell Culture, Volume I (S. E. Pfeiffer, ed.), CRC Press, Boca Raton, Florida, pp. 1–49.Google Scholar
  117. Naiki, M., Marcus, D. M., and Ledeen, R., 1974, Properties of antisera to ganglioside GM1 and asialo GM1, J. Immunol 113: 84–93.PubMedGoogle Scholar
  118. Neale, E. A., Oertel, W. H., Bowers, L. M., and Weise, V. K., 1983, Glutamate decarboxylase immunoreactivity and 3H-aminobutyric acid accumulation within the same neurons in dissociated cell cultures of cerebral cortex, J. Neurosci 3: 376–382.PubMedGoogle Scholar
  119. Norton, W. T., 1983, Recent advances in the neurobiology of oligodendroglia, Adv. Cell. Neurobiol 4: 3–55.Google Scholar
  120. Norton, W. T. (ed.) 1984, Oligodendroglia, Plenum Press, New York.Google Scholar
  121. Norton, W. T., and Autilio, L. A., 1966, The lipid composition of purified bovine brain myelin, J. Neurochem 13: 213–222.PubMedGoogle Scholar
  122. Obata, K., Momoko, M., and Handa, S., 1977, Effects of glycolipids on in vitrodevelopment of neuromuscular junctions, Nature 266: 369–371.PubMedGoogle Scholar
  123. Oertel, W. H., Mugnaini, E., Schmechel, D. E., Tappaz, M. L., and Kopin, I. J., 1982, The immunocytochemical demonstration of gamma-aminobutyric acid-ergic neurons-Methods and application, in: Cytochemical Methods in Neuroanatomy( S. L. Palay and V. Chan-Palay, eds.), Liss, New York, pp. 297–329.Google Scholar
  124. Ostermann, E., Sternberger, N. H., and Sternberger, L. A.,1983, Immunocytochemistry of brain-reactive monoclonal antibodies in peripheral tissues, Cell Tissue Res 228:459–473.PubMedGoogle Scholar
  125. Peng, W. W., Bressler, J. P., Tiffany-Castiglioni, E., and de Vellis, J., 1982, Development of a monoclonal antibody against a tumor-associated antigen, Science 215: 1102–1104.PubMedGoogle Scholar
  126. Pfenninger, K. H., 1978, Organization of neuronal membranes, Annu. Rev. Neurosci 1: 445–471.PubMedGoogle Scholar
  127. Pruss, R. M., 1979, Thy-1 antigen on astrocytes in long-term cultures of rat central nervous system, Nature 280: 688–689.PubMedGoogle Scholar
  128. Pukel, C. S., Lloyd, K. O., Travassos, L. R., Dippold, W. G., Oettgen, H. F., and Old, L. J., 1982, GD3, a prominent ganglioside of human melanoma: Detection and characterization by mouse monoclonal antibody, J. Exp. Med 155: 1133–1147.PubMedGoogle Scholar
  129. Raff, M. C., Mirsky, R., Fields, K. L., Lisak, R. P., Dorfman, S. H., Silberberg, D. H., Gregson, N. A., Liebowitz, S., and Kennedy, M. C., 1978, Galactocerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture, Nature 274: 813–816.PubMedGoogle Scholar
  130. Raff, M. C., Fields, K. L., Hakomori, S.-I., Mirsky, R. M., Pruss, R., and Winter, J., 1979, Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture, Brain Res 174: 283–308.PubMedGoogle Scholar
  131. Raff, M. C., Miller, R. H., and Noble, M., 1983a, A glial progenitor cell that develops in vitrointo an astrocyte or an oligodendrocyte depending on culture medium, Nature 303: 390–396.Google Scholar
  132. Raff, M. C., Abney, E. R., Cohen, J., Lindsay, R., and Noble, M., 1983b, Two types of astrocytes in cultures of developing rat white matter: Differences in morphology, surface gangliosides, and growth characteristics, J. Neurosci 3: 1289–1300.Google Scholar
  133. Ranscht, B., Clapshaw, P. A., Price, J., Noble, M., and Seifert, W., 1982, Development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside, Proc. Natl. Acad. Sci. USA 79: 2709–2713.PubMedGoogle Scholar
  134. Rapport, M. M., 1981a, Introduction to the biochemistry of gangliosides, in: Gangliosides in Neurological and Neuromuscular Function, Development, and Repair( M. M. Rapport and A. Gorio, eds.), Raven Press, New York, pp. xv–xix.Google Scholar
  135. Rapport, M. M., 1981b, Specificity of antiganglioside serum in the perturbation of CNS functions, in: Gangliosides in Neurological and Neuromuscular Function, Development, and Repair( M. M. Rapport and A. Gorio, eds.), Raven Press, New York, pp. 91–97.Google Scholar
  136. Rapport, M. M., and Gorio, A. (eds.), 1981, Gangliosides in Neurological and Neuromuscular, Function, Development and Repair, Raven Press, New York.Google Scholar
  137. Rapport, M. M., and Huong, Y.-Y. 1984, Present status of the immunology of gangliosides, in: Ganglioside Structure, Function and Biomedical Potential (R. W. Ledeen, R.K., Yu, M. M. Rapport and K. Suzuki, eds.), Plenum Press, New York, pp. 15–25.Google Scholar
  138. Revesz, T., and Greaves, M., 1975, Ligand-induced redistribution of lymphocyte membrane ganglioside GM1, Nature 257: 103–106.PubMedGoogle Scholar
  139. Richardson, P. J., 1983, Presynaptic distribution of the cholinergic-specific antigen Chol¬1 and 5’-nucleotidase in rat brain, as determined by complement-mediated release of neurotransmitters, J. Neurochem 41: 640–648.PubMedGoogle Scholar
  140. Rodman, J. S., and Akeson, R., 1981, A new antigen common to the rat nervous and immune systems. II. Molecular characterization, J. Neurosci. Res 6: 179–192.PubMedGoogle Scholar
  141. Rohrer, H., and Schachner, M., 1980, Surface proteins of cultured mouse cerebellar cells, J. Neurochem 35: 792–803.PubMedGoogle Scholar
  142. Roisen, F. J., Bartfeld, H., and Rapport, M. M., 1981, Ganglioside mediation of in vitroneuronal maturation, in: Gangliosides in Neurological and Neuromuscular Function, Development, and Repair( M. M. Rapport and A. Gorio, eds.), Raven Press, New York, pp. 135–150.Google Scholar
  143. Rothbard, J. B., Brackenbury, R., Cunningham, B. A., and Edelman, G. M., 1982, Difference in the carbohydrate structures of neural cell-adhesion molecules from adult and embryonic chicken brains, J. Biol. Chem 257: 11064–11069.PubMedGoogle Scholar
  144. Rougon, G., Deagostini-Bazin, H., Hirn, M., and Goridis, C., 1982, Tissue and developmental stage-specific forms of a neural cell surface antigen linked to differences in glycosylation of a common polypeptide, EMBO J 1: 1239–1244.PubMedGoogle Scholar
  145. Rougon, G., Hirsch, M. R., Hirn, M., Guenet, J. L., and Goridis, C., 1983, Monoclonal antibody to neural cell surface protein: Identification of a glycoprotein family of restricted cellular localization, Neuroscience Neuroscience: 511–520.PubMedGoogle Scholar
  146. Roussel, G., Labourdette, G., and Nussbaum, J. L., 1981, Characterization of oligodendrocytes in primary cultures from brain hemispheres of newborn rat, Develop. Biol 81: 372–378.PubMedGoogle Scholar
  147. Rutishauser, U., 1983, Molecular and biological properties of a neural cell adhesion molecule, Cold Spring Harbor Symp. Quant. Biol48: 501–514.PubMedGoogle Scholar
  148. Rutishauser, U., Thiery, J.-P., Brackenbury R., Sela, B.-A., and Edelman, G. M., 1976, Mechanisms of adhesion among cells from neural tissues of the chick embryo, Proc. Natl. Acad. Sci. USA 73: 577–581.PubMedGoogle Scholar
  149. Rutishauser, U., Thiery, J.-P., Brackenbury, R., and Edelman, G. M., 1978a, Adhesion among neural cells. III. Relationship of the surface molecule CAM to cell adhesion and the development of histotypic patterns, J. Cell Biol 79: 371–381.Google Scholar
  150. Rutishauser,U., Gall, E. W., and Edelman, G. M,. 1978b, Adhesion among neural cells of the chick embryo. IV. Role of the cell surface molecule CAM in the formation of neorite bundles in cultures of spinal ganglia, J. Cell Biol 79: 382–393.Google Scholar
  151. Sadoul, R., Hirn, M., Deagostini-Bazin, H., Rougon, G., and Goridis, C., 1983, Adult and embryonic mouse neural cell adhesion molecules have different binding properties, Nature 304: 347–349.PubMedGoogle Scholar
  152. Sakakibara, K., Iwamori, M., Uchida, T., and Nagai, Y., 1981a Immunohistochemical localization of galactocerebroside in kidney, liver, and lung of golden hamster, Experientia 37: 712–714.Google Scholar
  153. Sakakibara, K., Momoi, T., Uchida, T., and Nagai, Y., 1981b, Evidence for an association of glycosphingolipid with a colchicine-sensitive microtubule-like cytoskeletal structure of cultured cultured cells, Nature 293: 76–78.Google Scholar
  154. Salton, S. R. J., Richter-Landsberg, C., Greene, L. A., and Shelanski, M. L., 1983a, Nerve growth factor-inducible large external (NILE) glycoprotein: Studies of a central and peripheral neuronal marker, J. Neurosci 3: 441–454.Google Scholar
  155. Salton, S. R. J., Shelanski, M. L., and Greene, L. A., 1983b, Biochemical properties of the nerve growth factor-inducible large external (NILE) glycoprotein, J. Neurosci 3: 2420–2430.Google Scholar
  156. Sarthy, P. V., Curtis, B.M., and Catterall, W. A., 1983, Retrograde labeling, enrichment, and characterization of retinal ganglion cells from the neonatal rat, J. Neurosci 3: 2532–2544.PubMedGoogle Scholar
  157. Schachner, M., 1974, NS-1 (nervous system antigen-1), a glial cell-specific antigenic component of the cell surface, Proc. Natl. Acad. Sci. USA 71: 1795–1799.PubMedGoogle Scholar
  158. Schachner, M., 1982a, Cell type-specific surface antigens in the mammalian nervous system, J. Neurochem 39: 1–8.Google Scholar
  159. Schachner, M., 1982b, Immunological analysis of cellular heterogeneity in the cerebellum, in: Neuroimmunology ( J. Brockes, ed.), Plenum Press, New York, pp. 215–250.Google Scholar
  160. Schachner, M., 1982c, Glial antigens and the expression of neuroglial phenotypes, Trends Neurosci. 5: 225–228.Google Scholar
  161. Schachner, M., and Willinger, M., 1979a, Developmental expression of oligodendrocyte specific cell surface markers: NS-1 (nervous system antigen-1), cerebroside, and basic protein of myelin, in: The Menarini Series on Immunopathology (P.-A. Miescher, L. Bolis, S. Gorini, T. A. Lambo, G. J. V. Nossal, and G. Torrigiani, eds.), Volume 2, pp. 37–60.Google Scholar
  162. Schachner, M., and Willinger, M., 1979b, Cell type-specific cell surface antigens in the cerebellum, Prog. Brain Res 51: 23–44.Google Scholar
  163. Schachner, M., Wortham, K. A., Carter, L. D., and Chaffee, J. K., 1975, NS-4 (nervous system antigen-4), a cell surface antigen of developing and adult mouse brain and sperm, Develop. Biol 44: 313–325.PubMedGoogle Scholar
  164. Schachner, M., Schoonmaker, G., and Hynes, R. O., 1978, Cellular and subcellular localization of LETS protein in the nervous system, Brain Res 158: 149–158.PubMedGoogle Scholar
  165. Schnitzer, J., and Schachner, M., 1981a, Expression of Thy-1, H-2, and NS-4 cell surface antigens and tetanus toxin receptors in early postnatal and adult mouse cerebellum, J. Neuroimmunol 1: 429–456.Google Scholar
  166. Schnitzer, J., and Schachner, M., 1981b, Characterization of isolated mouse cerebellar cell populations in vitro, J. Neuroimmunol 1: 457–470.Google Scholar
  167. Schnitzer, J., and Schachner, M., 1981c, Developmental expression of cell type-specific markers in mouse cerebellar cells in vitro, J. Neuroimmunol 1: 471–487.Google Scholar
  168. Schnitzer, J., and Schachner, M., 1982, Cell type specificity of a neural cell surface antigen recognized by the monoclonal antibody A2B5, Cell Tissue Res 224: 625–636.PubMedGoogle Scholar
  169. Schnitzer, J,. Franke, W. W., and Schachner, M,. 1981, Immuomcytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system, J.Cell Biol 90: 435–447.PubMedGoogle Scholar
  170. Schwartz, M., and Spirman, N., 1982, Sprouting from chicken embryo dorsal root ganglia induced by nerve growth factor is specifically inhibited by affinity-purified anti-ganglioside antibodies, Proc. Natl. Acad. Sci. USA 79: 6080–6083.PubMedGoogle Scholar
  171. Seyfried, T. N., Yu, R. K., and Miyazawa, N., 1982, Differential cellular enrichment of gangliosides in the mouse cerebellum: Analysis using neurological mutants, J. Neurochem 38: 551–559.PubMedGoogle Scholar
  172. Solter, D., and Knowles, B. B., 1978, Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1), Proc. Natl. Acad. Sci. USA 75: 5565–5569.PubMedGoogle Scholar
  173. Sommer, I., and Schachner, M., 1981, Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: An immunocytological study in the central nervous system, Develop. Biol 83: 311–327.PubMedGoogle Scholar
  174. Spirman, N., Sela, B.-A., and Schwartz, M., 1982, Anti-ganglioside antibodies inhibit neuritic outgrowth from regenerating goldfish retinal explants, J. Neurochem 39: 874–877.PubMedGoogle Scholar
  175. Stallcup, W. B., 1981, The NG2 antigen, a putative lineage marker: Immunofluorescence localization in primary cultures of rat brain, Develop. Biol 83: 154–165.PubMedGoogle Scholar
  176. Stallcup, W. B., Arner, L. S., and Levine, J. M., 1983, An antiserum against the PC12 cell line defines cell surface antigens specific for neurons and Schwann cells, J. Neurosci 3: 68.Google Scholar
  177. Stallcup, W. B., Beasley, L., and Levine, J., 1983, Cell surface molecules that characterize different stages in the development of cerebellar interneurons, Cold Spring Harbor Symp. Quant. Biol 48: 761–774.PubMedGoogle Scholar
  178. Sternberger, N. H., Itoyama, Y., Kies, M. W., and Webster, H. d., 1978, Immunocytochemical method to identify basic protein in myelin-forming oligodendrocytes of newborn rat C.N.S., J. Neurocytol 7: 251–263.PubMedGoogle Scholar
  179. Sweadner, K. J., 1983, Post-translational modification and evoked release of two large surface proteins of sympathetic neurons, J. Neurosci 3: 2504–2517.PubMedGoogle Scholar
  180. Tardieu, M., Noseworthy, J. H., Perry, L., Che, M., Greene, M. I., and Weiner, H. L., 1983, Generation of a monoclonal antibody (Epenl) which binds selectively to murine ependymal cells, Brain Res 277: 339–346.PubMedGoogle Scholar
  181. Thiery, J.-P., Brackenbury, R., Rutishauser, U., and Edelman, G. M., 1977, Adhesion among neural cells of the chick embryo. II. Purification and characterization of a cell adhesion molecule from neural retina, J. Biol. Chem 252: 6841–6845.PubMedGoogle Scholar
  182. Trisler, G. D., 1982, Are molecular markers of cell position involved in the formation of neural circuits?, Trends Neurosci 5: 306–310.Google Scholar
  183. Trisler, G. D., Schneider, M. D., and Nirenberg, M., 1981, A topographic gradient of molecules in retina can be used to identify neuron position, Proc. Natl. Acad. Sci. USA 78: 2145–2149.PubMedGoogle Scholar
  184. van Heyningen, W. E., 1974, Gangliosides as membrane receptors for tetanus toxin, cholera toxin and serotonin, Nature 249: 415–417.Google Scholar
  185. Vulliamy, T., and Messenger, E. A., 1981, Tetanus toxin: A marker of amphibian neuronal differentiation in vitro, Neurosci. Lett 22: 87–90.PubMedGoogle Scholar
  186. Vulliamy, T., Rattray, S., and Mirsky, R., 1981, Cell-surface antigen distinguishes sensory and autonomic peripheral neurones from central neurones, Nature 291: 418–420.PubMedGoogle Scholar
  187. Walsh, F. S., 1980, Identification and characterization of plasma membrane antigens of neurons and muscle cells using monoclonal antibodies, in: Synaptic Constituents in Health and Disease( M. Brain, D. Skit, and H. Bachelard, eds.) Pergamon Press, Elmsford, New York, pp,. 285–320.Google Scholar
  188. Williams, A. F., Barclay, A. N., Letarte-Muirhead, M., and Morris, R. J., 1977, Rat Thy-1 antigens from thymus and brain: Their tissue distribution, purification and chemical composition, Cold Spring Harbor Symp. Quant. Biol 41: 51–61.PubMedGoogle Scholar
  189. Williams, C. A., Barna, J., and Schupf, N., 1980, Antibody to Thy-1 antigen injected into rat hypothalamus selectively inhibits carbamylcholine induced drinking, Nature 283: 82–84.PubMedGoogle Scholar
  190. Willinger, M., and Schachner, M,. 1980, GM1 ganglioside as a marker for neuronal differentiation in mouse cerebellum, Develop. Biol 74: 101–117.PubMedGoogle Scholar
  191. Yen, S.-H., and Fields, K. L., 1981, Antibodies to neurofilament, glial filament and fibroblast intermediate filament proteins bind to different cell types in the nervous system, J. Cell Biol 88: 115–126.PubMedGoogle Scholar
  192. Yen, S.-H., and Fields, K. L., 1983, Schwann cells contain a protein similar to the CNS astroglial filament protein, Soc. Neurosci. Abstr. 9: 71. 4.Google Scholar
  193. Yu, R. K., and Ando, S., 1980, Structures of some new complex gangliosides of fish brain, Adv. Exp. Med. Biol 125: 33–45.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Kay Fields
    • 1
  1. 1.Departments of Neurology and NeuroscienceAlbert Einstein College of MedicineBronxUSA

Personalised recommendations