Soot Reduction in Diesel Engines by Catalytic Effects

  • Richard S. Sapienza
  • Thomas Butcher
  • C. R. Krishna
  • Jeffrey Gaffney


The diesel engine’s proven fuel economy and lower emissions of unburned hydrocarbons and carbon monoxide makes it a viable alternative to a gasoline automotive plant, but the inherent production of particulate matter (soot) threatens the expanded use of the diesel engine.


Iron Carbide Diesel Engine Soot Formation Soot Emission Piston Crown 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. B. Palmer, J. Chem. Phys.,(1969).Google Scholar
  2. 2.
    H. A. Havemann, M. R. Rao, A. Natarajan, and T. L. Narasimhan, Alcohol and normal diesel fuels, in: “Gas and Oil Power,” 50: 15–19, (1955).Google Scholar
  3. 3.
    A. Lawson and A. J. Last, Development of an on-board mechanical fuel emulsifier for utilization of diesel/ methanol and methanol/gasoline fuel emulsions in transportation, Proceedings of the Third International Symposium in Alcohol Fuels Technology, Asilomar, California (1979).Google Scholar
  4. 4.
    J. Lahaye and G. Prado, Mechanisms of carbon black formation, in: “Chemistry and Physics of Carbon,” P. L. Walker, Jr. and P. A. Thrower, eds., Marcel Dekker, Inc., New York (1978).Google Scholar
  5. 5.
    G. McConnell and H. E. Howells, “Diesel Fuel Properties and Exhaust Gas — Distant Relations,” SAE 670091 (1967).Google Scholar
  6. 5a.
    R.H. Thring, The catalytic engine, Platinum Metals Review, 24: 126–133 (1980).Google Scholar
  7. 6.
    D. H. Cotton, N. J. Friswell, and D. R. Jenkins, The suppression of soot emission from flames by metal additives, Comb. Flame, 17:87–98 (1971).CrossRefGoogle Scholar
  8. 7.
    D. L. Trimm, The formation and removal of coke from nickel catalyst, Cat. Rev. Sc. Eng., 16:155 (1977).CrossRefGoogle Scholar
  9. 8.
    W. C. Pfefferle, The catalytic combustor: an approach to cleaner combustion, J. Energy, 2:142–146 (1978).CrossRefGoogle Scholar
  10. 9.
    A. J. Robell, E. V. Ballou, and M. Boudart, Surface diffusion of hydrogen on carbon, J. Phys. Chem., 68: 2748–2753 (1964).CrossRefGoogle Scholar
  11. 10.
    M. Boudart, Chemical kinetics and combustion, Proceedings of the Eight Symposium (International) on Combustion, The Wilkams and Wilkins Co., Baltimore, Maryland (1962).Google Scholar
  12. 11.
    G. J. Minkoff and C. R. H. Tipper, “Chemistry of Combustion Reactions,” Butterworths, London (1962).Google Scholar
  13. 12.
    B. Lewis and G. Von Elbe, “Combustion, Flames, and Explosions in Gases,” Academic Press, New York (1951).Google Scholar
  14. 13.
    J. Happel, S. Kiang, J. L. Spencer, S. Oki, and M. A. Knatow, Transient rate tracer studies in heterogeneous catalysis: oxidation of carbon monoxide, J. Catalysis, 50:429–440 (1979).CrossRefGoogle Scholar
  15. 14.
    R. S. Sapienza, M. J. Sansone, L. D. Spaulding, and J. F. Lynch, Novel interpretation of carbon oxide reductions, Fundamental Research in Heterogeneous Catalysis, 3:179 (1979).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Richard S. Sapienza
    • 1
  • Thomas Butcher
    • 1
  • C. R. Krishna
    • 1
  • Jeffrey Gaffney
    • 1
  1. 1.Department of Energy and EnvironmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations