Skip to main content

Modelling Control Thruster Plume Flow and Impingement

  • Chapter
Rarefied Gas Dynamics

Abstract

To accurately predict the effects of control thruster plume impingement on spacecraft structures, an existing analytical plume flow model was extended to deliver all relevant flow quantities like Mach number, mean free path etc., and to include free molecular plume flow by defining a freezing surface. The impingement is treated by simple local models for continuum, transition and free molecular flow-surface interaction. A comparison of computed impingement torques to inflight data from the Orbital Test Satellite shows reasonable agreement, supporting the basic results of the investigation, but stressing the importance of knowing the gas dynamical quantities of the nozzle expansion flow as exactly as possible, especially the adiabatic exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.-D. Boettcher, G. Dettleff, G. Koppenwallner, H. Legge, “A Study of Rocket Exhaust Plumes and Impingement Effects on Spacecraft Surfaces”. DFVLR IB 222-82 A 11, DFVLR Göttingen, 1982

    Google Scholar 

  2. G.A. Simons, “Effect of Nozzle Boundary Layers on Rocket Exhaust Plumes”. AIAA J., Techn. Notes, Vol. 10, No. 11 (1972), pp. 1534–1535

    Google Scholar 

  3. A.R. Vick, E.H. Andrews, “An Investigation of Highly Underexpanded Exhaust Plumes Impinging Upon a Perpendicular Flat Surface”. NASA Technical Note, NASA TN D-3269 (1966).

    Google Scholar 

  4. J.-C. Lengrand, J. Allegre, M. Raffin, “Interaction of Underexpanded Jets with Adjacent Flat Plates”. Rarefied Gas Dynamics, Progress in Astronautics and Aeronautics, Vol. 51, Part 1, edited by J.L. Potter, American Institute of Aeronautics and Astronautics, New York, 1977, pp. 447–458.

    Google Scholar 

  5. G.A. Bird, “Breakdown of Continuum Flow in Free Jets and Rocket Plumes”. Rarefied Gas Dynamics, Progress in Astronautics and Aeronautics, Vol. 74, Part II, edited by S.S. Fisher, American Institute of Aeronautics and Astronautics, New York, 1981, pp. 681–694.

    Google Scholar 

  6. S.A. Schaaf, P.L. Chambré, “Flow of Rarefied Gases”. Aero. Paperbacks No.8 (1961); High Speed Aerodynamics and Jet Propulsion, Vol. III, Sec. H, pp. 687–739, Princeton: Princeton University Press, 1958.

    Google Scholar 

  7. H. Legge, “Auftrieb, Widerstand und Wärmeübergangsgröβen in freier Mole- külströmung mit elliptischer Verteilungsfunktion”. DFVLR-AVA report 68 A 40, Göttingen, 1968

    Google Scholar 

  8. A.R. Vick, E.H. Andrews, “An Experimental Investigation of Highly Under-expanded Free Jets Impinging Upon a Parallel Flat Plate”. NASA Technical Note, NASA TN D-2336 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Legge, H., Boettcher, RD. (1985). Modelling Control Thruster Plume Flow and Impingement. In: Belotserkovskii, O.M., Kogan, M.N., Kutateladze, S.S., Rebrov, A.K. (eds) Rarefied Gas Dynamics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2467-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2467-6_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9497-9

  • Online ISBN: 978-1-4613-2467-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics