Interaction of Laser Light with Biological Tissue

  • A. J. Welch
  • M. Motamedi
Part of the Ettore Majorana International Science Series book series (EMISS, volume 22)


Various groups have reported photochemical, thermal and mechanical reactions as the result of irradiating tissue with a laser. Photochemical reactions have included non-thermal retinal damage produced by exposure at blue wavelengths[1,2] and photoradiation therapy, in which hematoporphyrin derivative (HPD) is activated by visible light for the treatment of malignant tumors. Lasers provide the relatively high intensity narrow band light needed for the photochemical reaction to take place[3]. Primarily, lasers are widely used to generate heat through absorption of light by the different constituents of tissue. This process can produce photocoagulation or vaporization of tissue[4]. More recently, lasers have been used to induce optical breakdown and the creation of shock waves which disrupt the surrounding tissue. Plasma breakdown occurs when electric fields are strong enough to strip electrons from atoms, causing ionization of the medium and formation of a plasma. This phenomena is being used in ophthalmology to cut membranes in the eye[5].


Laser Light Biological Tissue Diffusion Theory Axial Gradient Maximum Temperature Rise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. T. Ham, J. J. Ruffolo, H. A. Mueller, A. M. Clarke, and M. E. Moon, Investigative Ophthalmology and Visual Science, 17 (10): 1029–1035 (1978).Google Scholar
  2. 2.
    W. T. Ham, H. A. Mueller, and J. J. Ruffolo, SPIE, Ocular Effects of Non-ionizing Radiation, The Society of Photo-optical Instrumental Engineers, 229: 46–50 (1980).Google Scholar
  3. 3.
    T. J. Doughtery and R. E. Thoma, “Lasers in Photomedicine and Photobiology,” R. Pratesi and C.A. Sacchi, eds., Springer-Verlag, New York (1980).Google Scholar
  4. 4.
    J. A. Dixon, “Surgical Application of Lasers,” Institute of Electrical and Electronics Engineers, Proceedings, 70 (1982).Google Scholar
  5. 5.
    D. Aron-Rose, J.J. Aron, M. Griesemann, etal.,J.Am.Intraocul.Implant.Soc., 6:352–354 (1980)Google Scholar
  6. 6.
    J. A. Parrish, R. R. Anderson, F. Urbach, et al., “Biologic Effects of Ultraviolet Radiation with Emphasis on Human Responses to Longwave Ultraviolet,” Plenum Press, New York (1978).Google Scholar
  7. 7.
    E. R. Hendler, J. Crosbie, and J. D. Hardy, “Measurement of Skin Heating During Exposure to Infrared Heating,” Project NM 17-01-13-2 of Naval Air Material Center, Philadelphia, Pennsylvania, March (1957).Google Scholar
  8. 8.
    A. Ishimaru, “Wave Propogation in Random Media,” Vol. 1 and Vol. 2, Academic Press, New York (1978).Google Scholar
  9. 9.
    C. C. Johnson and A. W. Guy, Proc.IEEE, 60 (6): 692–718 (1972).CrossRefGoogle Scholar
  10. 10.
    M. Motamedi, A. Gonzales, and A. J. Welch, “Thermal Response of Gastro-intestinal Tissue to Nd-Yag Laser Irradiation: A Theoretical and Experimental Investigation,” to be published in Proceedings of 1983 International Congress of Lasers and Electro-optics, Laser Institute of America.Google Scholar
  11. 11.
    L. A. Priebe, L. E. Baker, and A. J. Welch, ins “Laser Surgery II,” Isaac Kaplan, ed., 242–256, Jerusalem Academic Press.Google Scholar
  12. 12.
    P. G. Kiefhaber, Nath, Moritz, “Endoscopical Control of Massive Gastrointestinal Hemorrhage by Irradiation with a High-Power Nd-Yag Laser,” Progressive Surgery, 15: 140–155 (1977).Google Scholar
  13. 13.
    W. W. Rother, T. Halldorsson, J. Langerholc, and K. Schaffler, “Present Status of the Nd-YAG Laser in Endoscopy and Surgery,” Laser Surgery II, 211–223, Isaac Kaplan, ed., Jerusalem Academic Press (1978).Google Scholar
  14. 14.
    T. Halldorsson, and J. Langerholc, “Thermodynamic Analysis of Laser Irradiation of Biologic Tissue,” Applied Optics 17 (24): 3948–3958 (1978).ADSCrossRefGoogle Scholar
  15. 15.
    A. N. Takata, L. Zaneveld, and W. Richter, “Laser-induced thermal damage of skin,” Final Report SAM-TR-77-38, U.S. Air Force, Aerospace Medical Division, Brooks Air Force Base, Texas (1978).Google Scholar
  16. 16.
    S. Chandrasekhar, “Radiative Transfer,” Oxford University Press, London and New York (1960).Google Scholar
  17. 17.
    V.V. Sobolev, “A Treatise on Radiative Transfer,” Van Nostrand-Reinhold, Princeton, New Jersey, (1963).Google Scholar
  18. 18.
    D.H. Menzel, “Selected Papers on Transfer of Radiation,” Dover, New York (1966).Google Scholar
  19. 19.
    L. O. Reynolds, “Optical Diffuse Reflectance and Transmittance from an Anisotropically Scattering Finite Blood Medium,” Doctoral Dissertation, Electrical Engineering, University of Washington, Seattle.Google Scholar
  20. 20.
    L. O. Svaasand, D. R. Doizon, and A. E. Profio, “Light Distribution in Tissue During Photoradiation Therapy,” Medical Imaging Science Group (MISG), University of Southern California (1981).Google Scholar
  21. 21.
    C. C. Johnson, IEEE Trans, BME 17 (2): 129–133 (1970).CrossRefGoogle Scholar
  22. 22.
    R. J. Zdrojkowski and N. R. Pisharoty, IEEE Trans. BME 17 (2): 122–128 (1970).CrossRefGoogle Scholar
  23. 23.
    L. O. Reynold, “Three Dimensional Reflection and Transmission Equations for Optical Diffusion in Blood,” M. S. Thesis, Electrical Engineering, University of Washington, Seattle (1970).Google Scholar
  24. 24.
    D. R. Doiron, L. O. Svaasand, and A. E. Profio, Lasers in medicine and surgery, SPIE 357: 48–52 (1982).Google Scholar
  25. 25.
    P. Kubelka, “New Contributions to the optics of intensely Light Scattering Materials,” Part I, J.Opt.Sci.Amer., 38: 448–457 (1948).MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    P. S. Mudget and L. W. Richards, Appl.Opt. 10: 1485 (1971).ADSCrossRefGoogle Scholar
  27. 27.
    B. J. Brinkworth, Appl.Opt. 11: 1434 (1972).ADSCrossRefGoogle Scholar
  28. 28.
    S. Wan R.R. Anderson and J. A. Parrish, Photochemistry and Photobiology 34: 493–499 (1981).Google Scholar
  29. 29.
    M. J. Van Gemert and J. P. Hulsberger Henning, Arch.Dermotol. Res., 270: 429–439 (1981).CrossRefGoogle Scholar
  30. 30.
    F. Kotter, J.Opt.Soc.Amer., 50: 483–490 (1960).ADSCrossRefGoogle Scholar
  31. 31.
    R.R. Anderson and J.A. Parrish, J.Of Invest.Derm. 77(1):13–19(1981)CrossRefGoogle Scholar
  32. 32.
    G. H. M. Gijsbers, “Optics of Tissue and In Vivo Fluorescence of Hematophophyzin-Derivative (HD),” Masters Thesis, Eindhoven University of Technology, The Netherlands (1983).Google Scholar
  33. 33.
    V. Twersky, J.Math.Phys., 3 (4): 724–734 (1962).MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    E. Lowinger, A. Gordon, A. Weinzeb and J. Gross, J.Appl.Physiol., 19 (6): 1179–1184 (1962).Google Scholar
  35. 35.
    N. Anderson and P. Sekely, Phys.Med.Biol., 12: 185–192 (1967).CrossRefGoogle Scholar
  36. 36.
    R. P. Reed, “Thin-Film Sensors of Micron-Size and Application in Biothermology,” Doctoral Dissertation, University of Texas, Austin, Texas (1966).Google Scholar
  37. 37.
    C. P. Cain and A. J. Welch, IEEE Transactions on Biomedical Engineering, BME 21 (4): 421 (1974).CrossRefGoogle Scholar
  38. 38.
    H. S. Carslaw and J. C. Jaeger, “Conduction of Heat in Solids,” Second edition, Oxford Press, London (1959).Google Scholar
  39. 39.
    R. V. Churchill, “Operational Mathematics,” Third Edition, McGraw-Hill, New York (1972).MATHGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • A. J. Welch
    • 1
  • M. Motamedi
    • 1
  1. 1.Electrical Engineering and Biomedical Engineering ProgramThe University of TexasAustinUSA

Personalised recommendations