Skip to main content

Weak Mixing and the Structure of Charged Currents

  • Chapter
  • 134 Accesses

Abstract

The knowledge of the quark mixing matrix and experimental implications from the Kobayashi-Maskawa model are presented. Nonleptonic decays, neutral particle-antiparticle mixing and CP violations in heavy quark systems are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.L. Glashow, Nucl. Phys. 22 (1961) 579;

    Article  Google Scholar 

  2. A. Salam and J.C. Ward, Phys. Lett 13 (1964) 168;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264;

    Article  ADS  Google Scholar 

  4. UA1 Collaboration at CERN, G. Arnison et al., Phys. Lett. 122B (1983) 103.

    ADS  Google Scholar 

  5. R.F. Peierls, T. Trueman and L.L. Wang, Phys. Rev. D16 (1977) 1397.

    ADS  Google Scholar 

  6. L.B. Okun and M.B. Voloshin, Nucl. Phys. B120 (1977) 459;

    Article  ADS  Google Scholar 

  7. C. Quigg, Rev. Mod. Phys. 94 (1977) 297;

    Article  ADS  Google Scholar 

  8. J. Kogut and J. Shigemitsu, Nucl. Phys. B129 (1977) 461;

    Article  ADS  Google Scholar 

  9. R. Horgan and M. Jacob, Proc. CERN School of Physics, Malente (FRG), 1980 (CERN-81-04), p. 65.

    Google Scholar 

  10. F.E. Paige, Proc. Topical Conf. on the Production of New Particles at Super-High Energies, Univ. Wisconsin, Madison, 1979.

    Google Scholar 

  11. Ling-Lie Chau, “Quark Mixing in Weak Interactions”, BNL preprint BNL-31859, Aug. 1982 to be published as a Physics Report.

    Google Scholar 

  12. M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49 (1973) 652.

    Article  ADS  Google Scholar 

  13. N. Cabibbo, Phys. Rev. Lett. 10 (1963) 531.

    Article  Google Scholar 

  14. S. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D2 (1970) 1285.

    ADS  Google Scholar 

  15. M. Roos, Nucl. Phys. B77 (1974) 420M.

    Google Scholar 

  16. R. Shrock and L.-L. Wang, Phys. Rev. Lett. 41 (1978) 1692.

    Article  ADS  Google Scholar 

  17. J.A. Thompson et al., Phys. Rev. D21 (1980) 25;

    ADS  Google Scholar 

  18. J. Wise et al., Phys. Lett. 91B (1980) 165;

    ADS  Google Scholar 

  19. J. Wise et al., Phys. Lett. 98B (1981) 423;

    Google Scholar 

  20. D.A. Jesen et al., Proc. of the XX Int’l. Conf. High Energy Physics, Wisconsin 1980, p. 364. CERN WA2 Collaboration,

    Google Scholar 

  21. M Bourquin et al., “Measurement of Se,pe,e,Se and Sne, Branching Ratios and Form Factors”, Contributed paper to Int’l. Conf. on High Energy Physics, Lisbon, Portugal, 9-15 July 1981.

    Google Scholar 

  22. For more recent analysis, see

    Google Scholar 

  23. J.F. Donoghue and B.R. Holstein, Phys. Rev. D25 (1982) 2015;

    ADS  Google Scholar 

  24. Ohio-Chicago-Argonne Collaboration, P. Keller et al., Phys. Rev. Lett. 48 (1982) 971;

    Article  ADS  Google Scholar 

  25. and see some attempts to fit, A. Garcia and P. Kielanowski, “Symmetry Breaking and Higher Representation in the Cabibbo Theory”, del Institute Politechnico National preprint, 1982, Mexico; and A. Bohm, “Fits of Hyperon Data”, U. of Texas at Austin preprint 1982, the fit though does not answer the fundamental question of the source of the breaking, demonstrated the SU(3) breaking of mass equality can accomodate the data.

    Google Scholar 

  26. For the original detailed analysis of mixing matrix from CP violation see, R.E. Shrock, S.B. Treiman and L.-L. Chau Wang, Phys. Rev. Lett. 42 (1979) 1589;

    Article  ADS  Google Scholar 

  27. V. Barger, W.F. Long and S. Pakvasa, Phys. Rev. Lett. 42 (1979) 1585.

    Article  ADS  Google Scholar 

  28. For a recent detailed quark mixing matrix, see

    Google Scholar 

  29. L.-L. Chau, W.-Y. Keung and M.D. Tran, Phys. Rev. 27D (1983) 2145 and Ref. [6].

    ADS  Google Scholar 

  30. For reviews see A. Silverman, Proc. of the 1982 Int’l. Symp. on Lepton and Photon Interactions at High Energies, Bonn, Aug. 24-29, 1982;

    Google Scholar 

  31. P. Franzini and J. Lee-Franzini, “Upsilon Physics at CESR”, Phys. Report, 81 (1982) 239 - 291.

    Article  Google Scholar 

  32. See the talk by Dr. D. Kreistick in this conference.

    Google Scholar 

  33. For the original bag calculation of the B, see

    Google Scholar 

  34. R. Shrock and S.B. Treiman, Phys. Rev. D19 (1979) 2148;

    ADS  Google Scholar 

  35. B. McWilliams and 0. Schanker, Phys. Rev. D22 (1980) 2853.

    ADS  Google Scholar 

  36. For a recent discussion on bag calculation see

    Google Scholar 

  37. P. Colic, D. Tadic and J. Trampetic, “KL-Ks Mass Difference and Quark Models”, Max-Planck Institute, etc., preprint, MPI-PAE/PTh, 1982.

    Google Scholar 

  38. (For some parameters of the bag model B can be negative. However even for negative B there are still solutions in the allowed ranges of S2, S3, though very limited, as noted by the authors of Ref. (15)); and

    Google Scholar 

  39. J.F. Donoghue, E. Golowich, B.R. Holstein, Phys. Lett. 119B (1982) 412.

    ADS  Google Scholar 

  40. K. Wilson, Phys. Rev. D10 (1974) 2445;

    Google Scholar 

  41. A.M. Polyakov, Phys. Lett. 59B (1975) 82;

    Google Scholar 

  42. G. ft Hooft, Phys. Rev. D14 (1976) 3432.

    Google Scholar 

  43. For recent work, see M. Creutz, Phys. Rev. Lett. 43 (1979);

    Google Scholar 

  44. M. Creutz, L. Jacobs, C. Rebbi, Phys. Rev. D20 (1979) 1915;

    Google Scholar 

  45. I would like to thank Prof. N. Cabibbo for an enlightening discussion on the topic.

    Google Scholar 

  46. S. Pakvasa, S.F. Tuan and J.J. Sakurai, Phys. Rev. D23 (1981) 2799.

    ADS  Google Scholar 

  47. E.A. Paschos, U. Türke, “Charged Current Coupling in the Six Quark Model”, Univ. Dortmund preprint, DO-TH 82/07, 1982. (Their results of Vcs and Vcd from ?, ? reactions are different from those of Ref. [14] due to some difference in the analysis; see comments in Ref. [14].

    Google Scholar 

  48. CERN, Dortmund, Heidelberg, CEN Saclay, and Beijing Collaboration, H. Abramowicz et al., CERN preprint CERN-EP-82/77.

    Google Scholar 

  49. L.-L. Chau, W.-Y. Keung and S.C.C. Ting, Phys. Rev. D24 (1981) 2861.

    ADS  Google Scholar 

  50. See Sections 1.3 and III.3 of Ref. [6].

    Google Scholar 

  51. Aachen, CERN, Torino collaboration, M. Holder et al., Phys. Lett. 40B (1972) 141;

    ADS  Google Scholar 

  52. Princeton, BNL experiment, M. Banner et al., Phys. Rev. 28 (1972) 1997;

    Article  Google Scholar 

  53. K. Kleinknecht, Proc. of the XVII Int’l. Conf. on High Energy Physics, London, 1974, ed. J.R. Smith, (Rutherford Lab., Chilton, Didcot, Berkshire, England (1974) p. 111-23; and Ann. Rev. Nucl. Sci., 26 (1976) 26.

    Google Scholar 

  54. A.I. Vainshtein, V.I. Zakharov and M.A. Shifman, Pisma Zh. Eksp. Teor. Fiz. 22 (1975) 123 [JETP Lett. 22 (1975) 55], Nucl. Phys. B120 (1977) 316, Zh. Eksp. Teor. Fix. 72 (1977) 1275 [Sov. Phys. JETP 45 (1977) 670].

    Google Scholar 

  55. F.J. Gilman and M.B. Wise, Phys. Lett. 83B (1979) 83.

    ADS  Google Scholar 

  56. F.J. Gilman and M.B. Wise, Phys. Rev. D20 (1979) 2392;

    Google Scholar 

  57. M.B. Wise and E. Witten, Phys. Rev. D30 (1979) 1216;

    Google Scholar 

  58. L. Wolfenstein, Nucl. Phys. B150 (1979) 501;

    Google Scholar 

  59. B.Guberina and R.D. Peccei, Nucl. Phys. B163 (1980) 289;

    Google Scholar 

  60. C.T. Hill, Phys. Lett. 97B (1980) 275;

    Google Scholar 

  61. V.V. Prokhorov, Yad. Fiz. 31 (1979) 1019, [Sov. J. Nucl. Phys. 31 (1980) 527].

    Google Scholar 

  62. J.S. Hagelin, Phys. Rev. D23 (1981) 119;

    Google Scholar 

  63. The relevance of the W-exchange diagram in K decays and its implication on ef/e was pointed out in, L.L. Chau Wang, “Quark Mixing and Decay”, Proc. of the Int’l. Workshop on High Energy Physics, Serpukov, U.S.S.R, Sept. 1980.

    Google Scholar 

  64. T.D. Lee and C.N. Yang, Phys. Rev. 108 (1967) 395;

    Google Scholar 

  65. A. Pais and S.B. Treiman, Phys. Rev. D12 (1975) 2744;

    ADS  Google Scholar 

  66. L.B. Okun, V.I. Zakharov and B.M. Pontecorvo, Lett, al Nuovo Cim. 13 (1975) 218.

    Article  Google Scholar 

  67. M. Bander, D. Silverman and A. Soni, Phys. Rev. Lett. 43 (1979) 242.

    Article  ADS  Google Scholar 

  68. B. Carter and A.I. Sanda, Phys. Rev. Lett. 45 (1980) 953;

    Google Scholar 

  69. B. Carter and A.I. Sanda, Phys. Rev. D23 (1981) 1567;

    ADS  Google Scholar 

  70. I.I. Bigi and A.I. Sanda, Nucl. Phys. B193 (1981) 85.

    Article  ADS  Google Scholar 

  71. J. Bernabéu and C. Jarlskog, Z. Phys. C Particle and Fields 8, (1981) 233.

    Article  ADS  Google Scholar 

  72. L.L. Chau Wang, “Phenomenology of CP Violation from the Kobayashi-Maskawa Model”, AIP Conf. Proc. No. 72, Particle and Fields, Subseries No. 23, “Weak Interactions as Probes of Unification”, Virginia Polytechnic Inst. 1980, eds. G.B. Collins, L.N. Chang and J.R. Ficenec.

    Google Scholar 

  73. The development of the complete six quark diagram for meson decays was reported in L.-L. Chau Wang, “Flavor Mixing and Charm Decay”, Proc. of 1980 Guangzhou (Canton) Conf. on Theoretical Particle Physics, Jan. 5-14, 1980. The importance of the W-exchange diagram for the D0 decay was also discussed.

    Google Scholar 

  74. I would like to thank Drs. K. Kilian, T.K. Kalogeropoulos, P. Pavlopoulos and R.R. Rau for enlightening discussions on the experimental possibility of such studies.

    Google Scholar 

  75. J. Ellis, M.K. Gaillard and D.V. Nanopoulos, Nucl. Phys. B109, (1976) 213;

    Google Scholar 

  76. B.W. Lee, Phys. Rev. D10 (1974) 897,

    ADS  Google Scholar 

  77. B.W. Lee, Phys. Rev. D15 (1977) 3394;

    ADS  Google Scholar 

  78. A.I. Vainshtein, V.I. Zakharov, L.B. Okun, M.A. Shifman, Yad. Fiz. 24 (1976) 820 [Sov. J. Nucl. Phys. 24 (1976) 427];

    Google Scholar 

  79. F.J. Gilman and M.B. Wise, Phys. Rev. D21 (1980) 3150;

    ADS  Google Scholar 

  80. R. Decker and E.A. Paschos, Phys. Lett. 106B (1981) 211.

    ADS  Google Scholar 

  81. T.G. Rizzo, Phys. Rev. D21 (1980) 2692;

    ADS  Google Scholar 

  82. R. Decker and E.A. Paschos, Phys. Lett. 106B (1981) 211;

    ADS  Google Scholar 

  83. B.A. Campbell and P.J. O’Donnel, Phys. Rev. 25D (1982) 1989.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press

About this chapter

Cite this chapter

Chau, LL. (1985). Weak Mixing and the Structure of Charged Currents. In: Newman, H.B. (eds) Electroweak Effects at High Energies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2451-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2451-5_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9489-4

  • Online ISBN: 978-1-4613-2451-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics