Skip to main content

Ribonucleotide Reductase and Deoxyribonucleotide Pools

  • Chapter

Part of the book series: Basic Life Sciences ((BLSC,volume 31))

Abstract

The replication of DNA requires a balanced supply of the four deoxyribonucleoside triphosphates (dNTPs) that is provided by reduction of the corresponding ribonucleotides through the action of the enzyme ribonucleotide reductase [24]. A single protein catalyzes the reduction of all four ribonucleotides. The evidence for this is two-fold: (i) Homogeneous proteins prepared from bacterial and mammalian sources catalyze the four reactions with about equal efficiency and (ii) single step mutations in the enzyme affect reductions of all ribonucleotides.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Åkerblom, A. Ehrenberg, A. Gräslund, H. Lankinen, P. Reichard, and L. Thelander, Overproduction of the free radical of ribonucleotide reductase in hydroxyurea-resistant mouse fibroblast 3T6 cells, Proc. Natl. Acad. Sci. USA, 78: 2159 – 2163 (1981).

    Article  PubMed  Google Scholar 

  2. G. Bjursell and P. Reichard, Effects of thymidine on deoxyribo-nucleoside triphosphate pools and deoxyribonucleic acid synthesis in Chinese hamster ovary cells, J. Biol. Chem., 248: 3904 – 3909 (1973).

    PubMed  CAS  Google Scholar 

  3. N. C. Brown and P. Reichard, Role of effector binding in allosteric control of ribonucleoside diphosphate reductase, J. Mol. Biol., 46: 39 – 55 (1969).

    Article  PubMed  CAS  Google Scholar 

  4. S. Eriksson, L. J. Gudas, B. Ullman, S. M. Clift, and D. W. Martin, Jr., DeoxyATP resistant ribonucleotide reductase of mutant mouse lymphoma cells; evidence for heterozygosity for the protein Ml subunits, J. Biol. Chem., 256: 10184 – 10188 (1981).

    PubMed  CAS  Google Scholar 

  5. S. Eriksson, L. J. Gudas, S. M. Clift, J. W. Caras, B. Ullman, and D. W. Martin, Jr., Evidence for genetically independent allosteric regulatory domains of the protein Ml subunit of mouse ribonucleotide reductase, J. Biol. Chem., 256: 10193 – 10197 (1981).

    PubMed  CAS  Google Scholar 

  6. S. Eriksson, L. Thelander, and M. Åkerman, The allosteric regulation of calf thymus ribonucleoside diphosphate reductase, Biochemistry, 18: 2948 – 2952 (1979).

    Article  PubMed  CAS  Google Scholar 

  7. E. R. Giblett, J. E. Anderson, F. Cohen, B. Pollara, and H. J. Meuwissen, Adenosinedeaminase deficiency in two patients with severely impaired cellular immunity, Lancet, 2: 1067 – 1069 (1972).

    Article  PubMed  CAS  Google Scholar 

  8. M. T. Hakala and E. Taylor, The ability of purine and thymine derivatives and of glycine to support the growth of mammalian cells in culture, J. Biol. Chem., 234: 126 – 128 (1959).

    PubMed  CAS  Google Scholar 

  9. H. Klenow, On the effect of some adenine derivatives on the incorporation in vitroof isotopically labeled compounds into the nucleic acids of Ehrlich ascites tumor cells, Biochem. Biophys. Acta, 35: 412 – 421 (1959).

    Article  PubMed  CAS  Google Scholar 

  10. A. Larsson and P. Reichard, Enzymatic synthesis of deoxyribo-nucleotides. IX. Allosteric effects in the reduction of pyrimidine ribonucleotides by the ribonucleoside diphosphate reductase system of Escherichia coli, J. Biol. Chem., 241: 2533 – 2539 (1966).

    PubMed  CAS  Google Scholar 

  11. A. Larsson and P. Reichard, Enzymatic synthesis of deoxyribo-nucleotides. X. Reduction of purine ribonucleotides; allosteric behavior and substrate specificity of the enzyme system from Escherichia coliB, J. Biol. Chem., 241: 2540 – 2549 (1966).

    PubMed  CAS  Google Scholar 

  12. J. W. Littlefield, Selection of hybrids from matings of fibroblasts in vitroand their presumed recombinants, Science, 145: 709 – 710 (1964).

    Article  PubMed  CAS  Google Scholar 

  13. D. W. Martin, Jr., and E. W. Gelfand, Biochemistry of diseases of immunodevelopment, Ann. Rev. Biochem., 50: 845 – 877 (1981)

    Article  PubMed  CAS  Google Scholar 

  14. E. C. Moore and R. B. Hurlbert, Regulation of mammalian deoxyribonucleotide biosynthesis by nucleotides as activators and inhibitors, J. Biol. Chem., 241: 4802 – 4809 (1966).

    PubMed  CAS  Google Scholar 

  15. B. Nicander and P. Reichard, Aphidicolin sensitivity of variant 3T6 cells selected for changes in ribonucleotide reductase, Biochem. Biophys. Res. Commun., 103: 148 – 155 (1981).

    Article  PubMed  CAS  Google Scholar 

  16. B. Nicander and P. Reichard, Dynamics of pyrimidine deoxynu-cleoside triphosphate pools in relationship to DNA synthesis in 3T6 mouse fibroblasts, Proc. Natl. Acad. Sci. USA, 80: 1347 – 1351 (1983).

    Article  PubMed  CAS  Google Scholar 

  17. P. Reichard, Control of deoxyribonucleotide synthesis in vitroand in vivo, in: Advances in Enzyme Regulation (G. Weber, ed.) Vol. 10, pp. 3 – 16, Pergamon Press, Oxford and New York (1972).

    Google Scholar 

  18. P. Reichard, From deoxynucleotides to DNA synthesis, Fed. Proc. 37: 9– 14 (1978)

    PubMed  CAS  Google Scholar 

  19. P. Reichard, Z. N. Canellakis, and E. S. Canellakis, Regulatory mechanisms in the synthesis of deoxyribonucleic acid in vitro, Biochim. Biophys. Acta, 41: 558 – 559 (1960).

    Article  PubMed  CAS  Google Scholar 

  20. E. Scarano, The enzymatic deamination of 6-aminopyrimidine deoxyribonucleotides. I. The enzymatic deamination of deoxy-cytidine 5’-phosphate and of 5’-methyldeoxycytidine 5’-phos-phate, J. Biol. Chem., 235: 706 – 713 (1960).

    PubMed  CAS  Google Scholar 

  21. L. Skoog and B. Nordenskjöld, Effects of hydroxyurea and 1-β-Arabinofuranosyl cytosine on deoxyribonucleotide pools in mouse embryo cells, Eur. J. Biochem., 19: 81 – 89 (1971).

    Article  PubMed  CAS  Google Scholar 

  22. L. Skoog, B. Nordenskjöld, and G. Bjursell, Deoxyribonucleo-side-triphosphate pools and DNA synthesis in synchronized hamster cells, Eur. J. Biochem., 33: 428 – 432 (1973).

    Article  PubMed  CAS  Google Scholar 

  23. L. Thelander, 21. S. Eriksson, and M. Åkerman, Ribonucleotide reductase from calf thymus. Separation of the enzyme into two nonidentical subunits, protein Ml and M2, J. Biol. Chem., 255: 7426 – 7432 (1980).

    PubMed  CAS  Google Scholar 

  24. L. Thelander and P. Reichard, Reduction of ribonucleotides, Ann. Rev. Biochem., 48: 133 – 158 (1979).

    Article  PubMed  CAS  Google Scholar 

  25. F. Tomita and I. Takahashi, A novel enzyme, dCTP deaminase, found in bacillus subtilisinfected with phage PBS 1, Biochim. Biophys. Acta, 179: 18 – 27 (1969).

    CAS  Google Scholar 

  26. B. Ullman, L. J. Gudas, S. M. Clift, and D. W. Martin, Jr., Isolation and characterization of purine-nucleoside phosphoryl-ase-deficient T-lymphoma cells and secondary mutants with altered ribonucleotide reductase: Genetic model for immunodeficiency disease, Proc. Natl. Acad. Sci. USA, 76: 1074 – 1078 (1979).

    Article  PubMed  CAS  Google Scholar 

  27. B. Ullman, L. J. Gudas, J. W. Caras, S. Eriksson, G. Weinberg, M. A. Wormsted, and D. W. Martin, Jr., Demonstration of normal and mutant protein Ml subunits of deoxyGTP resistant ribonucleotide reductase from mutant mouse lymphoma cells, J. Biol. Chem., 256: 10189 – 10192 (1981).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Reichard, P. (1985). Ribonucleotide Reductase and Deoxyribonucleotide Pools. In: de Serres, F.J. (eds) Genetic Consequences of Nucleotide Pool Imbalance. Basic Life Sciences, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2449-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2449-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9488-7

  • Online ISBN: 978-1-4613-2449-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics