Skip to main content

Part of the book series: Basic Life Sciences ((BLSC,volume 31))

Abstract

Base analog mutagens are structurally modified bases which sufficiently mimic the natural bases to be incorporated into DNA but whose specificity of incorporation and subsequent templating properties lead to mutation [17, 19]. Two base analogs are quite predominant in mutational literature, the pyrimidine analog 5-bromo-uracil (5BU) and the purine analog 2-aminopurine (2AP). While this study does draw from our knowledge of 5BU-induced mutagenesis, our experimental efforts have concentrated on 2-aminopurine and some related purine analogs. The chemical and biological properties of 2AP have recently been reviewed by Ronen (see Ref. 49).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. M. Aebersold, Mutagenic Mechanism of 5-Bromodeoxyuridine in Chinese Hamster Cells, Mutat. Res., 36: 357–362 (1976).

    CAS  Google Scholar 

  2. J. C. Barret, Induction of Gene Mutation in and Cell Transformation of Mammalian Cells by Modified Purines: 2-Amino- purine and 6-N-hydroxylaminopurine, Proc. Natl. Acad. Sci., U.S.A., 78: 5685–5689 (1981).

    Article  Google Scholar 

  3. S. Benzer, On the topography of the genetic fine structure, Proc. Natl. Acad. Sci., U.S.A., 47: 403–415 (1961).

    Article  PubMed  CAS  Google Scholar 

  4. M. J. Bessman, N. Muzyczka, M. F. Goodman, and R. L. Schnaar, Studies on the Biochemical Basis of Spontaneous Mutation. II. The Incorporation of a Base and Its Analogue into DNA by Wild- Type, Mutator, and Antimutator DNA Polymerase, J. Mol. Biol., 88: 409–421 (1974).

    Article  PubMed  CAS  Google Scholar 

  5. M. J. Bessman and L. J. Reha-Krantz, Studies on the Biochemical Basis of Spontaneous Mutation. V. Effect of Temperature on Mutation Frequency, J. Mol. Biol., 116: 115–123 (1977).

    CAS  Google Scholar 

  6. H. E. Brockman and F. J. de Serres, Induction of ad-3 mutants of Neurospora crassa by 2-Aminopurine, Genetics, 48: 597–604 (1963).

    PubMed  CAS  Google Scholar 

  7. I. W. Caras, M. A. Maclnnes, D. H. Pershing, P. Coffino, and A. W. Martin, Mechanisms of 2-Aminopurine Mutagenesis in Mouse T-Lymphosarcoma Cells, Mol. Cell. Biol., 2: 1096–1103 (1982).

    CAS  Google Scholar 

  8. S. P. Champe and S. Benzer, Reversal of Mutant Phenotypes by 5-Fluorouracil: An Approach to Nucleotide Sequences in Messenger-RNA, Proc. Natl. Acad. Sci., U.S.A., 48: 532–546 (1962).

    Article  PubMed  CAS  Google Scholar 

  9. T. Chan, Deoxyguanosine Toxicity on Lymphoid Cells as a Cause for Immunosuppression in Purine Nucleoside Phosphorylase Deficiency, Cell, 14: 523–530 (1978).

    Article  PubMed  CAS  Google Scholar 

  10. L. K. Clayton, M. F. Goodman, E. Q. Branscomb, and D. J. Galas, Error Induction and Correction by Mutant and Wild Type T4 DNA Polymerases, J. Biol. Chem., 254: 1902–1912 (1979).

    PubMed  CAS  Google Scholar 

  11. D. Clive, K. 0. Johnson, J. F. S. Spector, A. G. Bateson, and M. H. Brown, Validation and Characterization of the L5178Y/TK+/-mouse Lymphoma Mutagen Assay System, Mutat. Res., 59: 61–108 (1979).

    CAS  Google Scholar 

  12. C. Coulondre and J. H. Miller, Genetic Studies of the lac Repressor. III. Additional Correlation of Mutational Sites with Specific Amino Acid Residues, J. Mol. Biol., 117: 525–575 (1977a).

    Article  PubMed  CAS  Google Scholar 

  13. C. Coulondre and J. H. Miller, Genetic Studies of the lac Repressor. IV. Mutagenic Specificity in the lacl Gene of Escherichia coli, J. Mol. Biol., 117: 577–606 (1977b).

    Article  PubMed  CAS  Google Scholar 

  14. C. Coulondre, J. H. Miller, P. J. Farabaugh, and W. Gilbert, Molecular Basis of Base Substitution Hotspots in Escherichia coli, Nature, 274: 775–780 (1978).

    Article  PubMed  CAS  Google Scholar 

  15. V. I. Danilov, Yu. A. Kruglyak, V. A. Kupriyevich, and O. V. Shramko, Mechanism of the Mutagenic Effect of 2-Aminopurine, Biophysics (USSR), 12: 840–844 (1967).

    Google Scholar 

  16. R. L. Davidson and E. R. Kaufman, Bromodeoxyuridine Mutagenesis in Mammalian Cells is Stimulated by Thymidine and Suppressed by Deoxycytidine, Nature, 276: 722–723 (1978).

    Article  PubMed  CAS  Google Scholar 

  17. J. W. Drake, The Molecular Basis of Mutaton, Holden-Day, San Francisco (1970).

    Google Scholar 

  18. B. K. Duncan and J. H. Miller, Mutagenic Deamination of Cytosine Residues in DNA, Nature, 287: 560–561 (1980).

    Article  PubMed  CAS  Google Scholar 

  19. E. Freese, The Specific Mutagenic Effect of Base Analogs on Phate T4, J. Mol. Biol., 1: 87–105 (1959).

    Article  CAS  Google Scholar 

  20. E. Freese, The Molecular Mechanisms of Mutations, Proc. 5th Int. Congr. Biochem., Moscow (1961).

    Google Scholar 

  21. B. W. Glickman, Spontaneous Mutagenesis in E. coli Strains Lacking 6-Methyladenine Residues in Their DNA: An Altered Mutational Spectrum in dam - Mutants, Mutation Res., 62:227- 237 (1979).

    Google Scholar 

  22. B. W. Glickman, Methylation-Instructed Mismatch Repair as a Post-Replication Error Avoidance Mechanisms in Escherichia coli, in: “Molecular and Cellular Mechanisms of Mutagenesis” J, F. Lemontt and W. M. Generoso, eds.), pp. 65–87, Plenum Press, New York (1982).

    Google Scholar 

  23. B. W. Glickman, P. van der Elsen, and M. Radman, Induced Mutagenesis in dam mutants of Escherichia coli: A Role for 6-Methyladenine in Error-Avoidance, Molec. Gen. Genet., 163: 307–312 (1978).

    Article  CAS  Google Scholar 

  24. B. W. Glickman and M. Radman, The Isolation and Characterization of Mutants of Escherichia coli K12 Defective in Mismatch Correction, Proc. Natl. Acad. Sci., U.S.A., 77: 1063–1067 (1980).

    Article  PubMed  CAS  Google Scholar 

  25. M. F. Goodman, R. Hopkins, and W. C. Gore, 2-Aminopurine-Induced Mutagenesis in T4 Bacteriophage: A Model Relating Mutation Frequency to 2-Aminopurine Incorporation in DNA, Proc. Natl. Acad. Sci., U.S.A., 74: 4806–4810 (1977).

    Article  PubMed  CAS  Google Scholar 

  26. H. Gottschling and E. Freese, Incorporation of 2-Aminopurine into the Deoxyribonucleic Acid of Bacteria and Bacteriophages, Z. Naturforsch., 16B: 515–519 (1961).

    Google Scholar 

  27. R. I. Hopkins and M. F. Goodman, Deoxyribonucleotide Pools, Base Pairing, and Sequence Configuration Affecting Bromodeoxyuridine- and 2-Aminopurine-Induced Mutagenesis, Proc. Natl. Acad. Sci., U.S.A., 77: 1801–1805 (1980).

    Article  PubMed  CAS  Google Scholar 

  28. B. D. Howard and I. Tessman, Identification of the Altered Bases in Mutated Single-Stranded DNA. II. In vivo Mutagenesis by 5-Bromodeoxyuridine and 2-Aminopurine, J. Mol. Biol., 9: 364–371 (1964).

    Article  PubMed  CAS  Google Scholar 

  29. M. Inou, S. Mori, and S. Hori, Mutagenic Effect of Base Analogs Incorporated into Rice, Japn. J. Breed., 26: 110–120 (1976).

    Google Scholar 

  30. C. Janion, The Synthesis and Properties of N6-Substituted 2-Aminopurine Derivatives, Acta Biochim. Pol., 23: 57–68 (1976).

    CAS  Google Scholar 

  31. C. Janion, Hydroxy-N6-2-aminopurine, N4-hydroxycytidine, and 5-Methyl-N4-hydroxy-deoxycytidine: Potent Mutagens of the Base Analog Type, Mutat. Res., 41: 37–38 (1977).

    Google Scholar 

  32. C. Janion, The Efficiency and Extent of Mutagenic Activity of Some New Mutagens of Base-Analog Type, Mutat. Res., 56: 225–234 (1978).

    CAS  Google Scholar 

  33. E. R. Kaufman and R. L. Davidson, Bromodeoxyuridine Mutagenesis in Mammalian Cells, Mutagenesis is Independent of the Amount of Bromouracil in the DNA, Proc. Natl. Acad. Sci., U.S.A., 75: 4982–4986 (1978).

    Article  PubMed  CAS  Google Scholar 

  34. E. R. Kaufman and R. L. Davidson, Bromodeoxyuridine Mutagenesis in Mammalian Cells is Stimulated by Purine Deoxyribonucleotides, Somatic Cell Genetics, 5: 653–663 (1979).

    Article  PubMed  CAS  Google Scholar 

  35. R. F. Kimball and S. W. Perdue, Attempts to Induce Mutations in Haemophilus influenzae with the Base Analogs 5-Bromodeoxy- uridine and 2-Aminopurine, Mutat. Res., 44: 197–206 (1977).

    CAS  Google Scholar 

  36. A. Kleinhofs, H. J. Gorz, and F. A. Haskins, Mutation Induction in Melilotus alba annua by Chemical Mutagens, Crop. Sci., 8: 631–632 (1968).

    CAS  Google Scholar 

  37. R. E. Koch, The Influence of Neighboring Base Pairs upon Base- pair Substitution Mutation Rates, Proc. Natl. Acad. Sci., U.S.A., 68: 773–776 (1971).

    Article  PubMed  CAS  Google Scholar 

  38. B. A. Kunz and B. W. Glickman, Infidelity of Conjugal DNA Transfer, Genetics, 105: 489–500 (1983).

    PubMed  CAS  Google Scholar 

  39. G. Maenhaut-Michael and P. Caillet-Fauqet, 2-Aminopurine Induced DNA Repair in E. coli, Molec. Gen. Genet., 188: 143–148 (1982).

    Article  Google Scholar 

  40. M. G. Marinus, Location of DNA Methylase Genes on the Escherichia coli Map, Molec. Gen. Genet., 127: 47–55 (1973).

    Article  CAS  Google Scholar 

  41. J. H. Miller, C. Coulondre, and P. J. Farabaugh, Correlation of Nonsense Sites in lacI Gene with Specific Codons in the Nucleotide Sequence, Nature, 274: 770–775 (1978).

    Article  PubMed  CAS  Google Scholar 

  42. E. C. Moore and R. B. Hurlbert, Regulation of Mammalian Deoxyribonucleotide Biosynthesis by Nucleotides as Activators and Inhibitors, J. Biol. Chem., 241: 4802–4809 (1966).

    PubMed  CAS  Google Scholar 

  43. C. Pauling, The Specificity of Thymineless Mutagenesis, in: “Structural Chemistry and Molecular Biology” (A. Rich and N. Davidson, eds.), pp. 383–398, Freeman, New York (1968).

    Google Scholar 

  44. D. H. Pershing, L. McGinty, C. W. Adams, and R. G. Fowler, Mutational Specificity of the Base Analog, 2-Aminopurine in Escherichia coli, Mutat. Res., 83: 25–37 (1981).

    Google Scholar 

  45. B. Pullman and A. Pullman, La tautomerie des bases puriques et pyrimidiques et la theorie des mutations, Biochim. Biophys. Acta, 64: 403–405 (1962).

    Article  CAS  Google Scholar 

  46. L. J. Reha-Krantz and M. J. Bessman, Studies on the Biochemical Basis of Mutation. IV. Effect of Amino Acid Substitution on the Enzymatic and Biological Properties of Bacteriophage T4 DNA Polymerase, J. Mol. Biol., 116: 99–113 (1977).

    Article  PubMed  CAS  Google Scholar 

  47. L. S. Ripley, Influence of Diverse Gene 43 DNA Polymerases on the Incorporation and Replication at A:T Base Pairs in Bacterio phate T4, J. Mol. Biol., 150: 197–216 (1981).

    Article  PubMed  CAS  Google Scholar 

  48. E. G. Rogan and M. J. Bessman, Studies on the Pathway of Incorporation of 2-Aminopurine into the Deoxyribonucleic Acid of Escherichia coli, J. Bacteriol., 103: 622–633 (1970).

    PubMed  CAS  Google Scholar 

  49. A. Ronen, 2-Aminopurine, Mutat. Res., 75: 1–47 (1980).

    CAS  Google Scholar 

  50. A. Ronen and A. Rahat, Mutagen Specificity and Position Effects on Mutation in T4rII Nonsense Sites, Mutat. Res., 34: 21–34 (1976).

    CAS  Google Scholar 

  51. A. Ronen, A. Rahat, and C. Halevy, Marker Effects on Reversion of T4rII Mutants, Genetics, 84: 423–436 (1976).

    PubMed  CAS  Google Scholar 

  52. E. Rosenberg, C. Mora, and D. L. Edwards, Selection of Extranu- clear Mutants of Neurospora crassa, Genetics, 83: 11–24 (1976).

    PubMed  CAS  Google Scholar 

  53. R. Rudner, Mutation as an Error in Base Pairing, Biochem. Biophys. Res. Commun., 3: 275–280 (1960).

    Article  CAS  Google Scholar 

  54. R. Rudner, Mutation as an Error in Base Pairing. I. Mutagenicity of Base Analogs and their Incorporation into the DNA of Salmonella typhimurium, Z. Vererbusl., 92: 336–360 (1961).

    Article  CAS  Google Scholar 

  55. R. Rudner, Mutation as an Error in Base Pairing. II. Kinetics of 5-Bromodeoxyuridine and 2-Aminopurine-Induced Mutagenesis, Z. Vererbungsl., 92: 361–379 (1961).

    Article  CAS  Google Scholar 

  56. B. Rydberg, Bromouracil Mutagenesis in Escherichia coli. Evidence for Involvement of Mismatch Repair, Mol. Gen. Genet., 152 19–28 (1977).

    Article  CAS  Google Scholar 

  57. T. R. Skopek and F. Hutchinson, DNA Base Changes Induced by Bromouracil Mutagenesis of Lambda Phage, J. Mol. Biol., 159: 19–33 (1982).

    Article  PubMed  CAS  Google Scholar 

  58. M. D. Smith, R. R. Green, L. S. Ripley, and J. W. Drake, Thymineless Mutagenesis in Bacteriophage T4, Genetics, 74: 393–403 (1973).

    PubMed  CAS  Google Scholar 

  59. S. Sora, L. Panzeri, and G. E. Magni, Molecular Specificity of 2-Aminopurine in Saccharomyces cerevisiae, Mutat. Res., 20: 207–213 (1973).

    CAS  Google Scholar 

  60. W. G. Sorenson, J. P. Simpson, and Tong-Man Ong, Comparison of Mutagenic and Recombinogenie Effects of Some Adenine Analogs in Saccharomyces cerevisiae D7, Mutat. Res., 82: 95–100 (1981).

    CAS  Google Scholar 

  61. P. A. Todd and B. W. Glickman, The Mutational Specificity of UV Light in Excision Repair Proficient and Excision Repair Deficient Strains of Escherichia coli: Implications for a Role for Secondary Structure in Determining Mutational Hot- spots, Proc. Natl. Acad. Sci., U.S.A., 79: 4123–4127 (1982).

    Article  PubMed  CAS  Google Scholar 

  62. A. Wacker, S. Kirschfeld, and S. Trager, Uber den Einbau Purinanaloger Verbindungen in die Bakterien-Nukleinsaure, J. Mol. Biol., 2: 241–242 (1960).

    Article  CAS  Google Scholar 

  63. R. Weinberg and H. W. Boyer, Base Analog Induced Arabinose- Negative Mutants of Escherichia coli, Genetics, 51: 545–553 (1964).

    Google Scholar 

  64. L. A. Weymouth and L. A. Loeb, Mutagenesis during in vitro DNA Synthesis, Proc. Natl. Acad. Sci., U.S.A., 75: 1924–1928 (1978).

    Article  PubMed  CAS  Google Scholar 

  65. E. M. Witkin and N. A. Sicurella, Pure Clones of Lactose- Negative Mutants Obtained in Escherichia coli after Treatment with 5-Bromouracil, J. Mol. Biol., 8: 610–613 (1964).

    Article  PubMed  CAS  Google Scholar 

  66. C. Yanofski, J. Ito, and V. Horn, Amino Acid Replacements and the Genetic Code, Cold Spring Harbor Symp. Quant. Biol., 31: 151–162 (1966).

    Article  Google Scholar 

  67. D. A. Youngs, E. Van der Schueren, and K. C. Smith, Involvement of uvrD, exrA, and recB Genes in the Control of the Post- replicational Repair Process, in: “Molecular Mechanisms for Repair of DNA” (P. C. Hanawalt and R. B. Setlow, eds.), pp. 331–333, Plenum Press, New York (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Glickman, B.W. (1985). 2-Aminopurine Mutagenesis in Escherichia Coli . In: de Serres, F.J. (eds) Genetic Consequences of Nucleotide Pool Imbalance. Basic Life Sciences, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2449-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2449-2_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9488-7

  • Online ISBN: 978-1-4613-2449-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics