Skip to main content

Deoxyribonucleoside-Induced Selective Modulation of Cytotoxicity and Mutagenesis

  • Chapter
Genetic Consequences of Nucleotide Pool Imbalance

Part of the book series: Basic Life Sciences ((BLSC,volume 31))

Abstract

Treatment of Chinese hamster cells with deoxythymidine (dThd)‡ and deoxycytidine (dCyd) leads to phosphorylation of these nucleosides and imbalances of the cells’ deoxyribonucleotide (dNTP) pools [17, 36]. Treatment of the cells with alkylating agents leads to alkylation of bases in DNA, and the alkylated bases may mispair during DNA replication [39]. Imbalances of pyrimidine dNTP pools or alkylation of DNA can induce cytotoxicity and mutagenesis [17, 39]. Synergistic effects of alkylating agents and deoxyribonucleosides on mutagenesis and cytotoxicity have been demonstrated by us [30–32] and more recently by other groups [5, 22, 26]. In the present article we have collected the results of our studies in this area. We also report data pertaining to the mechanisms of the above synergistic effects, and we discuss some possible practical applications of our findings to the control of the development of drug resistance in cells treated with chemicals used in cancer chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. J. Abbott and R. Saffhill, DNA Synthesis with Methylated Poly (dC-dG) Templates, Evidence for a Competitive Nature to Miscoding by O6-Methylguanine, Biochim. Biophys. Acta, 562: 51–61 (1979).

    CAS  Google Scholar 

  2. P. M. Aebersold, Mutation Induction by 5-Fluorodeoxyuridine in Synchronous Chinese Hamster Cells, Cancer Res., 39: 808–810 (1979).

    PubMed  CAS  Google Scholar 

  3. P. J. Benke, N. Herrick, and A. Herbert, Hypoxanthine Guanine Phosphoribosyl-transferase Variant Associated With Accelerated Purine Synthesis, J. Clin. Invest., 52: 2234–2244 (1973).

    Article  PubMed  CAS  Google Scholar 

  4. M. D. Bradley, B. Bhuyan, M. C. Francis, R. Langenbach, A. R. Peterson, and E. Huberman, Mutagenesis by Chemical Agents in V-79 Chinese Hamster Cells: A Review and Analysis of the Literature, Mutation Res., 87: 81–142 (1981).

    PubMed  CAS  Google Scholar 

  5. J. Brennand, S. McMillan, and M. Fox, Effects of Metabolic Inhibitors on Cell Lethality and Mutation Induction in Chinese Hamster Cells, II. The Effect of Post-treatment with Non-Toxic Concentrations of Thymidine, Chem.-Biol. Interactions, 36: 89–106 (1981).

    CAS  Google Scholar 

  6. G. Bjursell and P. Reichrd, Effects of Thymidine on Deoxyribonucleoside Pools and Deoxyribonucleic Acid Synthesis in Chinese Hamster Ovary Cells, J. Biol. Chem., 248: 3904–3909 (1973).

    PubMed  CAS  Google Scholar 

  7. C. T. Caskey and G. D. Kruh, The HPRT Locus, Cell, 16: 1–9 (1979).

    Article  CAS  Google Scholar 

  8. J. E. Cleaver, W. J. Bodell, D. C. Gruenert, L. N. Kapp, W. K. Kaufmann, S. D. Park, and B. Zelle, Repair and Replication Abnormalities in Various Human Hypersensitive Diseases, in: Mechanisms of Chemical Carcinogenesis (C. C. Harris and P. A. Cerutti, eds.), pp. 409–418, Liss, New York (1982).

    Google Scholar 

  9. P. V. Danenberg, Thymidylate Synthetase, A Target Enzyme for Cancer Chemotherapy, Biochim. Biophys. Acta, 473: 73–85 (1977).

    CAS  Google Scholar 

  10. L. L. Danhauser and Y. M. Rustum, Effect of Thymidine on the Toxicity, Antitumor Activity and Metabolism of 1-β-D-Arabinofuranosylcytosine in Rats Bearing a Chemically Induced Colon Carginoma, Cancer Res., 40: 1274–1280 (1980).

    PubMed  CAS  Google Scholar 

  11. E. M. Egan, L. Sargent, A. Rosowsky, and D. W. Kufe, Rescue of Thymidine Cytotoxicity in L1210 Ascites by Elevated Endogenous Levels of Deoxycytidine, Cancer Treatment Reports, 65: 853–859 (1981).

    PubMed  CAS  Google Scholar 

  12. R. A. Ewig and K. W. Kohn, DNA-Protein Crosslinking and DNA Interstrand Crosslinking by Haloethylnitrosoureas in L1210 Cells, Cancer Res., 38: 3197–3203 (1978).

    PubMed  CAS  Google Scholar 

  13. J. Friedman and E. Huberman, Post-replication Repair and the Susceptibility of Chinese Hamster Cells to Cytotoxicity and Mutagenic Effects of Alkylating Agents, Proc. Natl. Acad. Sci., U.S.A., 77: 6072–6076 (1980).

    Article  PubMed  CAS  Google Scholar 

  14. G. B. Grindey and C. A. Nichol, Interaction of Drugs Inhibiting Different Steps in the Synthesis of DNA, Cancer Res., 32: 527–531 (1972).

    PubMed  CAS  Google Scholar 

  15. T. A. Kunkel, J. R. Silber, and L. A. Loeb, The Mutageneic Effect of Deoxynucleotide Substrate Imbalances During DNA Synthesis with Mammalian DNA Polymerases, Mutation Res., 94: 413–419 (1982).

    Article  PubMed  CAS  Google Scholar 

  16. T. A. Kunkel and L. A. Loeb, Fidelity of Mammalian DNA Polymerases, Science, 213: 765–767 (1981).

    Article  PubMed  CAS  Google Scholar 

  17. B. A. Kunz, Genetic Effects of Deoxyribonucleotide Pool Imbalances, Environ. Mutagen., 4: 695–725 (1982).

    CAS  Google Scholar 

  18. J. R. Landolph and P. A. Jones, Mutagenicity of 5-Azacytidine and Related Nucleosides, Cancer Res., 42: 817–823 (1982).

    PubMed  CAS  Google Scholar 

  19. P. D. Lawley and C. J. Thatcher, Methylation of Deoxyribonucleic Acid in Mammalian Cells by N-Methyl-N’-nitro-N-nitroso-guanidine, Biochem. J., 116: 693–707 (1970).

    Google Scholar 

  20. P. D. Lawley, Some Chemical Aspects of Dose-Response Relationships in Alkylation Mutagenesis, Mutation Res., 23: 283–295 (1974).

    Google Scholar 

  21. J. McCann, E. Choi, E. Yamasaki, and B. N. Ames, Detection of Carinogens as Mutagens in the Salmonella/Micro some Test: Assay of 300 Chemicals, Proc. Natl. Acad. Sci., U.S.A., 72: 5135–5139 (1975).

    Article  PubMed  CAS  Google Scholar 

  22. M. Meuth, Role of Deoxynucleoside Triphosphate Pools in the Cytotoxic and Mutagenic Effects of DNA Alkylating Agents, Somatic Cell Genet., 7: 89–102 (1981).

    Article  PubMed  CAS  Google Scholar 

  23. M. Meuth, N. L. Hereux-Huard, and M. Trudel, Characterization of a Mutator Gene in Chinese Hamster Ovary Cells, Proc. Natl. Acad. Sci., U.S.A., 76: 6505–6507 (1979).

    Article  PubMed  CAS  Google Scholar 

  24. M. Miyaki, K. Suzuki, M. Aihara, and T. Ono, Misincorporation in DNA Synthesis After Modification of Template for Polymerase by MNNG, MMS, and UV Radiation, Mutation Res., 107: 203–218 (1983).

    Article  PubMed  CAS  Google Scholar 

  25. F. F. Newbold, W. Warren, A. S. C. Medcalf, and J. Amos, Mutagenicity of Carcinogenic Methylating Agents is Associated with a Specific DNA Modification, Nature (London), 283: 596–599 (1980).

    Article  CAS  Google Scholar 

  26. A. Onfelt and D. Jenssen, Enhanced Mutagenic Response of MNU by Post-Treatment with Methyl Mercury, Caffeine, or Thymidine in V79 Chinese Hamster Cells, Mutation Res., 106: 297–303 (1982).

    Article  PubMed  CAS  Google Scholar 

  27. R. B. Painter, Effect of Caffeine on DNA Synthesis in Irradiated and Unirradiated Mammalian Cells, J. Mol. Biol., 143: 289–301 (1980).

    Article  PubMed  CAS  Google Scholar 

  28. A. R. Peterson, DNA Synthesis, Mutagenesis, Cytotoxicity, and DNA Damage in Cultured Mammalian Cells, Cancer Res., 40: 682–688 (1980).

    Google Scholar 

  29. A. R. Peterson, D. F. Krahn, H. Peterson, C. Heidelberger, B. K. Bhuyan, and L. H. Li, The Influence of Serum Components on the Growth of Chinese Hamster Cells in Medium Containing 8-Azaguanine, Mutation Res., 36: 345–356 (1976).

    Article  PubMed  CAS  Google Scholar 

  30. A. R. Peterson, J. R. Landolph, H. Peterson, and C. Heidelberger, Mutagenesis of Chinese Hamster Cells is Facilitated by Thymidine and Deoxycytidine, Nature (London), 276: 508–510 (1978).

    Article  CAS  Google Scholar 

  31. A. R. Peterson and H. Peterson, Differences in Temporal Aspects of Mutagenesis and Cytotoxicity in Chinese Hamster Cells Treated with Methylating Agents and Thymidine, Proc. Natl. Acad. Sci., U.S.A., 79: 1643–1647 (1982).

    Article  PubMed  CAS  Google Scholar 

  32. A. R. Peterson and H. Peterson, Facilitation by Pyrimidine Deoxyribonucleosides and Hypoxanthine of Mutagenic and Cytotoxic Effects of Monofunctional Alkylating Agents in Chinese Hamster Cells, Mutation Res., 61: 319–331 (1979).

    Article  PubMed  CAS  Google Scholar 

  33. A. R. Peterson, H. Peterson, and P. V. Danenberg, Induction of Mutations by 5-Fluorodeoxyuridine: A Mechanism of Self- Potentiated Drug Resistance? Biochem. Biophys. Res. Commun., 110: 573–577 (1983).

    CAS  Google Scholar 

  34. A. R. Peterson, H. Peterson, and C. Heidelberger, Oncogenesis, Mutagenesis, DNA Damage and Cytotoxicity in Cultured Mammalian Cells, Cancer Res., 39: 131–138 (1979).

    PubMed  CAS  Google Scholar 

  35. A. R. Peterson, H. Peterson, and C. Heidelberger, The Influence of Serum Components on the Growth and Mutation of Chinese Hamster Cells in Medium Containing Aminopterin, Mutation Res., 24: 25–33 (1974).

    Article  PubMed  CAS  Google Scholar 

  36. P. Reichard, From Deoxyribonucleosides to DNA Synthesis, Fed. Proc., 37: 9–14 (1978).

    Google Scholar 

  37. S. Shall, B. W. Durkacz, D. A. Gray, J. Irwin, P. J. Lewis, M. Perera, and M. Tavassoli, (ADP-Ribose)n Participates in DNA Excision Repair, in: “Mechanisms of Chemical Carcinogenesis” (C. C. Harris and P. A. Cerutti, eds.), pp. 389–407, Liss, New York (1982).

    Google Scholar 

  38. B. Singer, All Oxygens in Nucleic Acids React with Carcinogenic Ethylating Agents, Nature (London), 264: 333–339 (1976).

    Article  CAS  Google Scholar 

  39. B. Singer, The Effect of Base Modification on Fidelity in Transcription,in: “Carcinogenesis: Fundamental Mechanisms and Environmental Effects” (B. Pullman, P. 0. P. Ts’o, and H. Gelboin, eds.), pp. 91–102, Reidel, Boston (1980).

    Google Scholar 

  40. M. D. Topal and M. S. Baker, DNA Precursor Pool: A Significant Target for N-Methyl-N-nitrosurea in C3H/10T1/2 Clone 8 Cells, Proc. Natl. Acad. Sci., U.S.A., 79: 2211–2215 (1982).

    Article  PubMed  CAS  Google Scholar 

  41. G. Weinberg, B. Ullman, and D. W. Martin, Jr., Mutator Phenotypes in Mammalian Cell Mutants with Distinct Biochemical Defects and Abnormal Deoxyribonucleotide Pools, Proc. Natl. Acad. Sci., U.S.A., 78: 2447–2451 (1981).

    Article  CAS  Google Scholar 

  42. A. H. Wyllie, J. F. R. Kerr, and A. R. Currie, Cell Death: The Significance of Apoptosis, Intern. Rev. Cytology, 68: 251–305 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Peterson, A.R., Danenberg, P.V., Ibric, L.L.V., Peterson, H. (1985). Deoxyribonucleoside-Induced Selective Modulation of Cytotoxicity and Mutagenesis. In: de Serres, F.J. (eds) Genetic Consequences of Nucleotide Pool Imbalance. Basic Life Sciences, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2449-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2449-2_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9488-7

  • Online ISBN: 978-1-4613-2449-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics