Advertisement

Analysis and Manipulation of Plasmid-Encoded Pathways for the Catabolism of Aromatic Compounds by Soil Bacteria

  • K. N. Timmis
  • P. R. Lehrbach
  • S. Harayama
  • R. H. Don
  • N. Mermod
  • S. Bas
  • R. Leppik
  • A. J. Weightman
  • W. Reineke
  • H. J. Knackmuss

Abstract

Soil and water bacteria in general, and members of the genus Pseudomonas in particular, exhibit a fascinating wealth of exotic properties not found in commensal and parasitic bacteria, such as Escherichia coli. They are, for example, able to degrade and use as sources of carbon and energy a wide range of organic compounds, including some that are quite noxious and otherwise biocidal (e.g., phenol). Moreover, soil bacteria are able to evolve rapidly new metabolic activities in response to changes in environmental conditions, e.g., to evolve new pathways for the degradation of synthetic industrial compounds (xenobiotics) such as pesticides, that are newly applied to the environment (1). The rapidity of evolution of new pathways is particularly surprising because many pathways, e.g. those for the catabolism of aromatic hydrocarbons, involve a large number of enzymatic steps and often more than twice that number of polypeptides (2). It is hardly surprising, therefore, that many catabolic pathways are specified by plasmids (3), elements known to be instrumental for rapid genetic change in bacteria (4).

Keywords

Catabolic Pathway Broad Host Range Catabolic Gene Methyl Catechol Hybrid Plasmid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pemberton, J.M., B. Corney, and R.H. Don (1979) Evolution and spread of pesticide degrading ability among soil micro-organisms. In Plasmids of Medical, Environmental and Commercial Importance, K.N. Timmis and A. Piihler, eds. Elsevier/North-Holland, Amsterdam, pp. 287–299.Google Scholar
  2. 2.
    Ribbons, D.W., and R.W. Eaton (1982) Chemical transformations of aromatic hydrocarbons that support the growth of microorganisms. In Biodegradation and Detoxification of Environmental Pollutants, A.M. Chakraborty, ed. CRC Press, Boca Raton, Florida, pp. 59–84.Google Scholar
  3. 3.
    Franklin, F.C.H., M. Bagdasarian, and K.N. Timmis (1981) Manipulation of degradative genes of soil bacteria. In Microbial Degradation of Xenobiotic and Recalcitrant Compounds, T. Leisinger, R. Hlltter, A.M. Cook, and J. Nuesch, eds. Academic Press, London, pp. 111–132.Google Scholar
  4. 4.
    Farrell, R., and A.M. Chakrabarty (1979). Degradative plasmids: Molecular nature and mode of evolution. In Plasmids of Medical, Environmental and Commercial Importance, K.N. Timmis and Al Puhler, eds. Elsevier/NorthHolland, Amsterdam, pp. 97–109.Google Scholar
  5. 5.
    Keith, L.H., and W.A. Teilliard (1979) Priority pollutants I- a perspective view. Env. Sci. and Techn. 13: 416–423.CrossRefGoogle Scholar
  6. 6.
    Weightman, A.J., R.H. Don, P.R. Lehrback, and K.N. Timmis (1984) The identification and cloning of genes encoding halo- aromatic catabolic enzymes and the construction of hybrid pathways for substrate mineralization. In Genetic Control of Environmental Pollutants, G.S. Ommen and A. Hollaender, eds. Plenum, pp. 47–80.Google Scholar
  7. 7.
    Williams, P.A., and K. Murray (1974) Metabolism of benzoate and the methyl benzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J. Bact. 120: 416–423.PubMedGoogle Scholar
  8. 8.
    Wong, C.L., and N.W. Dunn (1974) Transmissible plasmid coding for the degradation of benzoate and m-toluate in Pseudomonas arvilla mt-2. Genet. Res. 23: 227–232PubMedCrossRefGoogle Scholar
  9. 9.
    Franklin, F.C.H., M. Bagdasarian, M.M. Bagdasarian, and K.N. Timmis (1981) Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway. Proc. Natl. Acad. Sci., USA 78: 7458–7462.PubMedCrossRefGoogle Scholar
  10. 10.
    Worsey, M.J., and P.A. Williams (1975) Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. J. Bact. 124: 7–13.PubMedGoogle Scholar
  11. 11.
    S. Harayama, N. Mermod, P.R. Lehrbach, and K.N. Timmis. Roles of the divergent branches of the meta-cleavage pathway for the degradation of benzoate and substituted benzoates. Submitted for publication.Google Scholar
  12. 12.
    Nakazawa, T., S. Inouye, and A. Nakazawa (1980) Physical and functional mapping of RP4-T0L plasmid recombinants: analysis of insertion and deletion mutations. J. Bact. 144: 222–231PubMedGoogle Scholar
  13. 13.
    Leppik, R., P.R. Lehrbach, and K.N. Timmis. Genetic analysis of the TOL plasmid-specified upper pathway for the degradation of toluene and xylenes. Submitted for publication.Google Scholar
  14. 14.
    Harayama, S., P.R. Lehrbach, and K.N. Timmis (1984) Transposon mutagenesis analysis of the meta-cleavage pathway operon genes of the TOL plasmid of Pseudomonas putida mt-2. J. Bact. (in press).Google Scholar
  15. 15.
    Worsey, M.J., F.C.H. Franklin, and P.A. Williams (1978) Regulation of the degradative pathway enzymes coded for by the TOL plasmid (pWWO) from Pseudomonas putida mt-2. J. Bact. 134: 757–764.PubMedGoogle Scholar
  16. 16.
    Inouye, S., A. Nakazawa, and T. Nakazawa (1981) Molecular cloning of gene xylS of the TOL plasmid: evidence for positive regulation of the xylDEGF operon by xylS. J. Bact. 148: 413–418.PubMedGoogle Scholar
  17. 17.
    Franklin, F.C.H., P.R. Lehrbach, R. Lurz, B. Rueckert, M. Bagdasarian, and K.N. Timmis (1983) Localization and functional analysis of transposon mutations in regulatory genes of the TOL catabolic pathway. J. Bact. 154: 676–685.PubMedGoogle Scholar
  18. 18.
    Mermod, N., P.R. Lehrbach, W. Reineke, H.-J. Knackmuss, and K.N. Timmis. Characterization of Pseudomonas putida TOL plas-mid meta cleavage pathway operon promoters and mutant constitutive promoters. Submitted for publication.Google Scholar
  19. 19.
    Inouye, S., A. Nakazawa and T. Nakazawa (1981) Molecular cloning of TOL genes xylB and xylE in Escherichia coli. J. Bact. 145: 1137–1143.PubMedGoogle Scholar
  20. 20.
    Jacoby, G.A., J.E. Rogers, A.E. Jacob, and R.W. Hedges (1978) Transposition of Pseudomonas toluene degrading genes and expression in E. coli. Nature (Lond.) 274: 179–180.PubMedCrossRefGoogle Scholar
  21. 21.
    Lehrbach, P.R., and K.N. Timmis (1983) Genetic analysis and manipulation of catabolic pathways in Pseudomonas. Biochem. Soc. Symp. 48: 191–219.PubMedGoogle Scholar
  22. 22.
    Sala-Trepat, J.M., and W.C. Evans (1971) The meta-cleavage of catechol by Azotobacter species. 4-oxalocrotonate pathway. Eur. J. Biochem. 20: 440–413.CrossRefGoogle Scholar
  23. 23.
    Zukowski, M.M., D.F. Gaffney, D. Speck, M. Kauffmann, A. Findeli, A. Wisecup, and J.-P. LeCocq (1983) Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene. Proc. Nat. Acad. Sci., USA 80: 1101–1105.CrossRefGoogle Scholar
  24. 24.
    Nakai, C., H. Kagamiyama, M. Nozaki, T. Nakazawa, S. Inouye, Y. Ebina, and A. Nakazawa (1983) Complete nucleotide sequence of the meta pyrocatechase gene on the TOL plasmid of Pseudomonas putida mt-2. J. Biol. Chem. 258: 2923–2928.PubMedGoogle Scholar
  25. 25.
    Lehrbach, P.R., J. Zeyer, W. Reineke, H.-J. Knackmuss, and K.N. Timmis (1984) Enzyme recruitment in vitro: use of cloned genes to extend the range of haloaromatics degraded by Pseudomonas sp. B13: J. Bact., 158: 1025–1032.PubMedGoogle Scholar
  26. 26.
    Zeyer, J., P.R. Lehrbach, and K.N. Timmis. Use of bacteria containing the cloned xylD gene of TOL plasmid pWWO to transform benzoate and substituted benzoates to the corresponding carboxyhydrodiols. Submitted for publication.Google Scholar
  27. 27.
    Reineke, W., and H.-J. Knackmuss (1978) Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of benzoic acid. Biochim. Biophys. Acta 542: 412–423.PubMedGoogle Scholar
  28. 28.
    Reineke, W., and H.-J. Knackmuss (1979) Construction of haloaromatics utilizing bacteria. Nature (Lond.) 277: 385–386.PubMedCrossRefGoogle Scholar
  29. 29.
    Dorn, E., M. Hellwig, W. Reineke, and H.-J. Knackmuss (1974) Isolation and characterization of a 3-chlorobenzoate degrading Pseudomonad. Archs. Microbiol. 99: 61–70.CrossRefGoogle Scholar
  30. 30.
    Schmidt, E., and H.-J. Knackmuss (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleylacetic acid. Biochem. J. 192: 339–347.PubMedGoogle Scholar
  31. 31.
    Chatterjee, D.K., S.T. Kellogg, S. Hamada and A.M. Chakrabarty (1981) Plasmid specifying total degradation of 3-chlorobenzoate by a modified ortho pathway. J. Bact. 146: 639–646.PubMedGoogle Scholar
  32. 32.
    Don, R.H., and J.M. Pemberton (1981). Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J. Bact. 145: 681–686.PubMedGoogle Scholar
  33. 33.
    Gaunt, J.K., and W.C. Evans (1971) Metabolism of 4-chloro-2- methylphenoxyacetate by a soil pseudomonad. Ring fission, lactonizing and delactonizing enzymes. Biochem. J. 122: 533–542.PubMedGoogle Scholar
  34. 34.
    Evans, W.C., B.S.W. Smith, N.H. Fernley and J.I. Davies (1971) Bacterial metabolism of 2,4-dichlorophenoxyacetate. Biochem. J. 122: 543–551.PubMedGoogle Scholar
  35. 35.
    Don, R.H., A.J. Weightman, H.-J. Knackmuss and K.N. Timmis (1984). Transposon mutagenesis and cloning analysis of the pathways for the degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate by Alcaligenes eutrophus JMP134 (pJP4). J. Bact. (in press).Google Scholar
  36. 36.
    Bartels, I., H.-J. Knackmuss and W. Reineke (1984) Suicide in- activation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. App. Env. Microbiol. 47: 500–505.Google Scholar
  37. 37.
    Reineke, W., D.J. Jeenes, P.A. Williams, and H.-J. Knackmuss (1982) TOL plasmid pWWO in constructed halobenzoate-degrading Pseudomonas strains: prevention of meta-pathway. J. Bact. 150: 195–201.PubMedGoogle Scholar
  38. 38.
    Bagdasarian, M., R. Lurz, B. Rueckert, F.C.H. Franklin, M.M. Bagdasarian, J. Frey and K.N. Timmis (1981) Specific purpose cloning vectors. II. Broad host range, high copy number RSFlOlO-derived vectors, and a host:vector system for gene cloning in Pseudomonas. Gene 16: 237–247.PubMedCrossRefGoogle Scholar
  39. 39.
    Yen, K.-M., and I.C. Gunsalus (1982) Plasmid gene organization: naphthalene/salicylate oxidation. Proc. Natl. Acad. Sci., USA 79: 874–878.PubMedCrossRefGoogle Scholar
  40. 40.
    Timmis, K.N. (1981) Gene manipulation in vitro. Soc. Gen. Microbiol. Symp. 31: 49–109.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • K. N. Timmis
    • 1
  • P. R. Lehrbach
    • 1
    • 2
  • S. Harayama
    • 1
  • R. H. Don
    • 1
  • N. Mermod
    • 1
  • S. Bas
    • 1
  • R. Leppik
    • 1
    • 3
  • A. J. Weightman
    • 1
    • 4
  • W. Reineke
    • 1
    • 5
  • H. J. Knackmuss
    • 5
  1. 1.Department of BiochemistryUniversity of GenevaGenevaSwitzerland
  2. 2.Biotechnology Australia Pty Ltd.RosevilleAustralia
  3. 3.Meat Research LaboratoryCSIROCannon HillAustralia
  4. 4.Dept. of Applied BiologyUniversity of Wales Institute of Science and TechnologyCardiff, WalesUK
  5. 5.Lehrstuhl für Chemische MikrobiologieUniversität-Gesamthochschule WuppertalFederal Republic of Germany

Personalised recommendations