Skip to main content

Plasmids in the Degradation of Chlorinated Aromatic Compounds

  • Chapter
Plasmids in Bacteria

Abstract

The soil-borne microbial community takes the “lion’s share” of the mineralization process of the ever-increasing input of man-made organic compounds in the biosphere, converting them to biomass or maintaining the balance of various elements in the soil (1). In the broad spectrum of stability of these compounds, halogen-substituted aromatic pollutants are of major concern because of their recalcitrance and magnitude of use (2). Haloaliphatic compounds possess shorter half-life in nature, most probably because of the presence of broad-specificity enzymes which can dehalogenate such compounds and are known to be active in Pseudomonas, Flavobacterium sp., and Moraxella sp. (3,4,5,6). In the past few years, isolation of pure cultures capable of degrading various compounds that are toxic and classified as recalcitrant, such as 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), 2,4-dichlorophenoxyacetic acid (2,4-D), pentachloro- phenol, etc., boosted up research in both the fields of basic understanding of the metabolic pathways of these compounds as well as in their potential use in decontamination technology (7,8,9,10,11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, M. (1969) Microbial degradation and biological effects of pesticides in soil iv soil biology. Rev. Res. Nat. Resources Res., UNESCO 9:209–226.

    Google Scholar 

  2. Alexander, M. (1981) Biodegradation of chemicals of environmental concern. Science 211: 132–138.

    Article  PubMed  CAS  Google Scholar 

  3. Kawasaki, H., N. Tone, and K. Tonomura (1981) Purification and properties of haloacetate halidohydrolase specified by plasmid from Moraxella sp. strain B. Agric. Biol. Chem. 45: 35–42.

    Article  CAS  Google Scholar 

  4. Goldman, P., G.W.A. Milne, and D.B. Keister (1968) Carbon-halogen bond cleavage. III. Studies on bacterial halidohydro-lases. J. Biol. Chem. 243: 428–434.

    PubMed  CAS  Google Scholar 

  5. Weightman, A.J., A.L. Weightman, and J.H. Slater (1982) Stereo-specificity of 2-monochloropropionate dehalogenation by the two dehalogenases of P. putida PP3: Evidence for two different de-halogenation mechanisms. J. Gen. Microb. 124: 433–437.

    Google Scholar 

  6. Chapman, P.J. (1979) Degradation mechanisms. In Microbial Degradation of Pollutants in Marine Environments, Environmental Protection Agency, Washington, D.C. pp. 28–66.

    Google Scholar 

  7. Kilbane, J.J., D.K. Chatterjee, J.S. Karns, S.T. Kellogg, and A.M. Chakrabarty (1982) Biodegradation of 2,4,5-trichlorophen-oxyacetic acid by a pure culture of Pseudomonas cepacia. Appl. Env. Microb. 44: 72–78.

    Google Scholar 

  8. Karns, J.S., J.J. Kilbane, D.K. Chatterjee, and A.M. Chakrabarty (1984) Microbial biodegradation of 2,4,5-trichloro- phenoxyacetic acid and chlorophenols. In Genetic Control of Environmental Pollutants, G.S. Omenn and A. Hollaender, eds. Plenum Press, New York, pp. 3–21.

    Google Scholar 

  9. Fisher, P.R., J. Appleton, and J.M. Pemberton (1978) Isolation and characterization of the pesticide degrading plasmid pJPl from Alcaligenes paradoxus. J. Bact. 135: 798–804.

    PubMed  CAS  Google Scholar 

  10. Stanlake, G.J., and R.K. Finn (1982) Isolation and characterization of pentachlorophenol degrading bacterium. Appl. Env. Microb. 44: 421–427.

    Google Scholar 

  11. Pignatello, J.J., M.M. Martinson, J.G. Steiert, R.E. Carlson, and R.L. Crawford (1983) Biodegradation and photolysis of pentachlorophenol in artificial freshwater streams. Appl. Env. Microb. 46: 1024–1031.

    CAS  Google Scholar 

  12. Chakrabarty, A.M. (1976) Plasmids in Pseudomonas. Ann. Rev, of Genet. 10: 7–30.

    Article  CAS  Google Scholar 

  13. Reineke, W., S.W. Wessels, M.A. Rubio, J. Latorre, V. Schwien, E. Schmidt, M. Schlomann, and H.-J. Knackmuss (1982) Degradation of monochlorinated aromatics following transfer of genes encoding chlorocatechol catabolism. FEMS Microb. Lett. 14: 291–294.

    Article  CAS  Google Scholar 

  14. Weightman, A.J., R.H. Don, P.R. Lehrbach, and K.N. Timmis (1984) The identification and cloning of genes encoding haloaromatic catabolic enzymes and the construction of hybrid pathways for substrate mineralization. In Genetic Control of Environmental Pollutants, G.S. Omenn and A. Hollaender, eds., Plenum Press, New York pp. 47–80.

    Google Scholar 

  15. Reineke, W., and H.-J. Knackmuss (1978) Chemical structure and biodegradability of halogenated aromatic compounds: Substitutent effects on 1,2-dioxygenation of benzoic acid. Biochim. Bioph. Acta. 542: 412–423.

    CAS  Google Scholar 

  16. Reineke, W., and H.-J. Knackmuss (1978) Chemical structure and biodegradability of halogenated aromatic compounds: Substituent effects on dehydrogenation of 3,4-cyclohexadiene-l,2- diol-l-carboxylic acid. Biochim. Bioph. Acta. 542: 424–429.

    CAS  Google Scholar 

  17. Knackmuss, H.-J., and M. Hellwig (1978) Utilization and cooxidation of chlorinated phenols by Pseudomonas sp. B13. Arch. Microb. 117: 1–7.

    Article  Google Scholar 

  18. Dorn, E., and H.-J. Knackmuss (1978) Chemical structure and biodegradability of halogenated aromatic compounds: Two catechol 1,2-dioxygenases from a 3-chlorobenzoate grown Pseudomonad. Biochem J. 174: 73–84.

    PubMed  CAS  Google Scholar 

  19. Schmidt, E., and H.-J. Knackmuss (1980) Chemical structure and biodegradability of halogenated aromatic compounds: Conversion of chlorinated muconic acids into maleoylacetic acid. Biochem J. 192: 339–347.

    PubMed  CAS  Google Scholar 

  20. Hartmann, J., W. Reineke, and H.-J., Knackmuss (1979) Metabolism of 3-chloro, 4-chloro, and 3.5 dichlorobenzoate by a Pseudomonad. Appl. Env. Microb. 37: 421–428.

    CAS  Google Scholar 

  21. Reineke, W., and H.-J. Knackmuss (1980) Hybrid pathway for chlorobenzoate metabolism in Pseudomonas sp. B13 derivatives. J. Bact. 142: 467–473.

    PubMed  CAS  Google Scholar 

  22. Pemberton, J.M., B. Corney, and R.H. Don (1979) Evolution and spread of pesticide degrading ability among soil microorganisms. In Plasmids of Medical Environmental and Commercial Importance, K.N. Timmis and A. Puhler, eds. Elsevier/North Holland, Biomedical Press, Amsterdam.

    Google Scholar 

  23. Schwien, U., and E. Schmidt (1980) Improved degradation of monochlorophenols by a constructed strain. Appl Env. Microb. 44: 33–39.

    Google Scholar 

  24. Chatterjee, D.K., S.T. Kellogg, S. Hamada, and A.M. Chakrabarty (1981) Plasmid specifying total degradation of 3-chlorobenzoate by a modified ortho pathway. J. Bact. 146: 639–646.

    PubMed  CAS  Google Scholar 

  25. Don, R.H., and J.M. Pemberton (1981) Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J. Bact. 145: 681–686.

    PubMed  CAS  Google Scholar 

  26. Chatterjee, D.K., and A.M. Chakrabarty (1983) Genetic homology between independently isolated chlorobenzoate-degradative plasmids. J. Bact. 153: 532–534.

    PubMed  CAS  Google Scholar 

  27. Chatterjee, D.K., and A.M. Chakrabarty (1982) Genetic rearrangement in plasmids specifying total degradation of chlorinated benzoic acid. Mol. Gen. Genet. 188: 279–285.

    Article  PubMed  CAS  Google Scholar 

  28. Friedman, A.M., S.R. Long, S.E. Brown, W.J. Buikema, and F.M. Ausubel (1982) Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhibozium mutants. Gene 18: 289–296.

    Article  PubMed  CAS  Google Scholar 

  29. Ditta, G., S. Stanfield, D. Cobin, and D. Helinski (1980) Broad host range DNA cloning system for gram-negative bacteria: Construction of a gene bank of Rhizobium meliloti. Proc. Natl. Acad. Sci., USA 77: 7347–7351.

    Article  PubMed  CAS  Google Scholar 

  30. Birnboim, H.C., and J. Doly (1970) A rapid alkaline extraction procedure for screening recombinant DNA. Nucl. Acid. Res. 7: 1513–1523.

    Article  Google Scholar 

  31. Wood, J.M. (1982) Chlorinated hydrocarbonsoxidation in the biosphere. Environ. Sci. Tech. 16: 291A–297A.

    Article  CAS  Google Scholar 

  32. Perlamn, D., and R.H. Rownd (1975) Transition of R factor NRl in Protens mirabilis: Molecular structure and replication of NRl deoxyribonucleic acid. J. Bact. 123: 1013–1034.

    Google Scholar 

  33. Ptashne, K, and S.N. Cohen (1975) Occurrence of insertion sequence (Is) region on plasmid deoxyribonucleic acid as direct and inverted nucleotide sequence duplications. J. Bact. 122: 776–781.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Ghosal, D., You, IS., Chatterjee, D.K., Chakrabarty, A.M. (1985). Plasmids in the Degradation of Chlorinated Aromatic Compounds. In: Helinski, D.R., Cohen, S.N., Clewell, D.B., Jackson, D.A., Hollaender, A. (eds) Plasmids in Bacteria. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2447-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2447-8_47

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9487-0

  • Online ISBN: 978-1-4613-2447-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics