Plasmid DNA Primases and their Role in Bacterial Conjugation

  • B. M. Wilkins
  • L. K. Chatfield
  • C. C. Wymbs
  • A. Merryweather


RNA primers necessary for starting DNA chain growth are generally made by the transcriptional activity of a group of enzymes called DNA primases. The primase of Escherichia coli is the 60,000 dalton (60 kd) product of the dnaG gene, which functions to generate primers for discontinuous replication of the bacterial chromosome and of at least some plasmids, as well as for complementary strand- synthesis on certain single-stranded genomes (24). Recently a variety of conjugative plasmids have been shown to encode DNA primases active in an assay requiring primer synthesis on single-stranded phage fd DNA. The list includes members of the B, C, I1. (= Iα), I1+B, I2, K, M, P, and U incompatibility groups (44). Representative plasmids of most of the other groups, including F, have been screened in this assay and are currently classified as primase negative (26), but it is possible that some may specify DNA primases that are unable to use fd DNA as a template. In this article, which concentrates on the primases specified by ColIb-P9 (IncI1), RP4 (IncP), and R16 (IncB), we review the biochemistry of these enzymes and the organization of the appropriate structural genes, and discuss the physiological role of their products in plasmid DNA metabolism during bacterial conjugation.


Donor Cell Recipient Cell Conjugative Plasmid Bacterial Conjugation dnaC Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achtman, M., N. Kennedy, and R. Skurray (1977) Cell-cell interactions in conjugating Escherichia coli: Role of traT protein in surface exclusion. Proc. Natl. Acad. Sci., USA 74: 5104–5108.CrossRefGoogle Scholar
  2. 2.
    Al-Doori, Z., M. Watson, and J. Scaife (1982) The orientation of transfer of the plasmid RP4. Genet. Res. 39: 99–103.PubMedCrossRefGoogle Scholar
  3. 3.
    Arai, K., and A. Kornberg (1981) Mechanism of dnaB protein action. IV. General priming of DNA replication by dnaB protein and primase compared with RNA polymerase. J. Biol. Chem. 256: 5267–5272.PubMedGoogle Scholar
  4. 4.
    Barth, P.T., and N.J. Grinter (1983) A possible site-specific recombination and resolution system in plasmid RP4. J. Cell. Biochem. Suppl. 7B Abstract 0891, p. 149.Google Scholar
  5. 5.
    Barth, P.T., N.J. Grinter, and D.E. Bradley (1978) Conjugal transfer system of plasmid RP4: Analysis by transposon 7 insertion. J. Bact. 133: 43–52.PubMedGoogle Scholar
  6. 6.
    Barth, P.T., L. Tobin, and G.S. Sharpe (1981) Development of broad host-range plasmid vectors. In Molecular Biology, Pathogenicity and Ecology of Bacterial Plasmids, S.B. Levy, R.C. Clowes, and E.L. Koenig, eds. Plenum Press, New York, pp. 439–448.Google Scholar
  7. 7.
    Boulnois, G.J., M.J. Beddoes, and B.M. Wilkins (1979) Rifampin disrupts conjugal and chromosomal deoxyribonucleic acid metabolism in Escherichia coli K-12 carrying some Incla plasmids. J. Bact. 138: 324–332.PubMedGoogle Scholar
  8. 8.
    Boulnois, G.J., and B.M. Wilkins (1978) A Coll-specified product, synthesized in newly infected recipients, limits the amount of DNA transferred during conjugation of Escherichia coli K-12. J. Bact. 133: 1–9.PubMedGoogle Scholar
  9. 9.
    Boulnois, G.J., and B.M. Wilkins (1979) A novel priming system for conjugal synthesis of an Incla plasmid in recipients. Mol. and Gen. Genet. 175: 275–279.CrossRefGoogle Scholar
  10. 10.
    Boulnois, G.J., B.M. Wilkins, and E. Lanka (1982) Overlapping genes at the DNA primase locus of the large plasmid Coll. Nucl. Acids Res. 10: 855–869.PubMedCrossRefGoogle Scholar
  11. 11.
    Chatfield, L.K., E. Orr, G.J. Boulnois, and B.M. Wilkins (1982) DNA primase of plasmid Collb is involved in conjugal DNA synthesis in donor and recipient bacteria. J. Bact. 152: 1188–1195.PubMedGoogle Scholar
  12. 12.
    Coetzee, J.N., D.E. Bradley, and R.W. Hedges (1982) Phages la and I2-2: IncI plasmid-dependent bacteriophages. J. Gen. Microb. 128: 2797–2804.Google Scholar
  13. 13.
    Curtiss, III, R., and R.G. Fenwick, Jr. (1975) Mechanism of conjugal plasmid transfer. In Microbiology — 1974, D. Schlessinger, ed. American Society for Microbiology, Washington, D.C., pp. 156–165.Google Scholar
  14. 14.
    Dalrymple, B.P. (1982) Plasmid encoded DNA primases. Ph.D. thesis, University of Leicester, England.Google Scholar
  15. 15.
    Dalrymple, B.P., G.J. Boulnois, B.M. Wilkins, E. Orr, and P.H. Williams (1982) Evidence for two genetically distinct DNA primase activities specified by plasmids of the B and I incompatibility groups. J. Bact. 151: 1–7.PubMedGoogle Scholar
  16. 16.
    Dalrymple, B.P., and P.H. Williams (1982) Detection of primase specified by IncB plasmid R864a. J. Bact. 152: 901–903.PubMedGoogle Scholar
  17. 17.
    Everett, R., and N. Willetts (1982) Cloning, mutation, and location of the F origin of conjugal transfer. EMBO J. 1: 747–753.PubMedGoogle Scholar
  18. 18.
    Fenwick, Jr., R.G., and R. Curtiss, III (1973) Conjugal deoxy-ribonucleic acid replication by Escherichia coli K-12: Stimulation in dnaB(ts) donors by minicells. J. Bact. 116: 1212–1223.PubMedGoogle Scholar
  19. 19.
    Fenwick, Jr., R.G., and R. Curtiss, III (1973) Conjugal deoxy-ribonucleic acid replication by Escherichia coli K-12: Effect of chloramphenicol and rifampin. J. Bact. 116: 1224–1235.PubMedGoogle Scholar
  20. 20.
    Gilbert, W., and D. Dressier (1968) DNA replication: The rolling circle model. Cold Spring Harbor Symposia on Quantitative Biology. Cold Spring Harbor, New York 33: 473–484.Google Scholar
  21. 21.
    Hartskeerl, R.A., J.E.N. Bergmans, M.C. Kamp, and W.P.M. Hoekstra (1983) Cloning of an exclusion-determining fragment of the IncI plasmid, R144. Plasmid 10: 11–20.PubMedCrossRefGoogle Scholar
  22. 22.
    Imber, R., R.L. Low, and D.S. Ray (1983) Identification of a primosome assembly site in the region of the ori2 replication origin of the Escherichia coli mini-F plasmid. Proc. Natl. Acad. Sci., USA 80: 7132–7136.PubMedCrossRefGoogle Scholar
  23. 23.
    Jacob, A.E., J.A. Shapiro, L. Yamamoto, D.I. Smith, S.N. Cohen, and D. Berg (1977) Plasmids studied in Escherichia coli and other enteric bacteria. In DNA insertion elements, plasmids, and episomes, A.I. Bukhari, J.A. Shapiro, and S.L. Adhya, eds. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 607–638.Google Scholar
  24. 24.
    Kornberg, A. (1980) DNA replication. W.H. Freeman and Co., San Francisco.Google Scholar
  25. 25.
    Kornberg, A. (1982) 1982 Supplement to DNA replication. W.H. Freeman and Co., San Francisco.Google Scholar
  26. 26.
    Lanka, E., and P.T. Barth (1981) Plasmid RP4 specifies a deoxyribonucleic acid primase involved in its conjugal transfer and maintenance. J. Bact. 148: 769–781.Google Scholar
  27. 26a.
    Lanka, E., and J.P. Fttrste (1984) Function and properties of RP4 DNA primase. In Proteins involved in DNA replication, U. Htibscher and S. Spadari, eds. Plenum Press, New York and London, pp. 265–280.Google Scholar
  28. 27.
    Lanka, E., R. Lurz, and J.P. Ftirste (1983) Molecular cloning and mapping of SphI restriction fragments of plasmid RP4. Plasmid 10: 303–307.PubMedCrossRefGoogle Scholar
  29. 28.
    Lanka, E., R. Lurz, M. Kroger, and J.P. Ftirste (1984) Plasmid RP4 encodes two forms of a DNA primase. Molecular and General Genetics 194: 65–72.PubMedCrossRefGoogle Scholar
  30. 29.
    Lanka, E., E. Scherzinger, E. Gtinther, and H. Schuster (1979) A DNA primase specified by I-like plasmids. Proc. Natl. Acad. Sci., USA 76: 3632–3636.PubMedCrossRefGoogle Scholar
  31. 30.
    Maturin, Sr., L.J., and R. Curtiss III (1981) Role of ribonucleic acid synthesis in conjugational transfer of chromosomal and plasmid deoxyribonucleic acids. J. Bact. 146: 552–563.PubMedGoogle Scholar
  32. 31.
    Meyer, R., and D.R. Helinski (1977) Unidirectional replication of the P-group plasmid RK2. Biochim. et Biophys. Acta 478: 109–113.Google Scholar
  33. 32.
    Nomura, N., R.L. Low, and D.S. Ray (1982) Identification of ColEl DNA sequences that direct single strand-to-double strand conversion by a (4X174 type mechanism. Proc. Natl. Acad. Sci., USA 79: 3153–3157.PubMedCrossRefGoogle Scholar
  34. 33.
    Nossal, N.G. (1983) Prokaryotic DNA replication systems. Ann. Rev, of Biochem. 53: 581–615.CrossRefGoogle Scholar
  35. 34.
    Rowen, L., and A. Kornberg (1978) A ribo-deoxyribonucleotide primer synthesized by primase. J. Biol. Chem. 253: 770–774.PubMedGoogle Scholar
  36. 35.
    Sasakawa, C., and M. Yoshikawa (1978) Requirements for suppression of a dnaG mutation by an I-type plasmid. J. Bact. 133: 485–491PubMedGoogle Scholar
  37. 36.
    Shaw, J.E., and H. Murialdo (1980) Morphogenetic genes C and Nu3 overlap in bacteriophage X. Nature (London) 283: 30–35.PubMedCrossRefGoogle Scholar
  38. 37.
    Smith, R.A., and J.S. Parkinson (1980) Overlapping genes at the cheA locus of Escherichia coli. Proc. Natl. Acad. Sci., USA 77: 5370–5374.PubMedCrossRefGoogle Scholar
  39. 38.
    Uemura, H., and K. Mizobuchi (1982) Genetic and physical char-acterization of the Collb plasmid using ColIb-R222 hybrids. Mol. Gen. Genet. 185: 1–12.CrossRefGoogle Scholar
  40. 39.
    Van der Ende, A., R. Teertstra, H.G.A.M. van der Avoort, and P.J. Weisbeek (1983) Initiation signals for complementary strand DNA synthesis on single-stranded plasmid DNA. Nucl. Acids Res. 11: 4957–4975.PubMedCrossRefGoogle Scholar
  41. 40.
    Vapnek, D., M.B. Lipman, and W.D. Rupp (1971) Physical properties and mechanism of transfer of R factors in Escherichia coli. J. Bact. 108: 508–514.PubMedGoogle Scholar
  42. 41.
    Wilkins, B.M. (1975) Partial suppression of the phenotype of Escherichia coli K-12 dnaG mutants by some I-like conjugative plasmids. J. Bact. 122: 899–904.PubMedGoogle Scholar
  43. 42.
    Wilkins, B.M., G.J. Boulnois, and E. Lanka (1981) A plasmid DNA primase active in discontinuous bacterial DNA replication. Nature (London) 290: 217–221.PubMedCrossRefGoogle Scholar
  44. 43.
    WilkinsB.M., and S.E. Hollom (1974) Conjugational synthesis of Flac and Coll DNA in the presence of rifampicin and in Escherichia coli K12 mutants defective in DNA synthesis. Mol. Gen. Genet. 134: 143–156.PubMedCrossRefGoogle Scholar
  45. 44.
    Willetts, N., and B. Wilkins (1984) Processing of plasmid DNA during bacterial conjugation. Microbiol. Rev. 48: 24–41.PubMedGoogle Scholar
  46. 45.
    Zipursky, S.L., and K.J. Marians (1980) Identification of two Escherichia coli factor Y effector sites near the origins of replication of the plasmids ColEl and pBR322. Proc. Natl. Acad. Sci., USA 77: 6521–6525.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • B. M. Wilkins
    • 1
  • L. K. Chatfield
    • 1
  • C. C. Wymbs
    • 1
  • A. Merryweather
    • 1
  1. 1.Department of GeneticsUniversity of LeicesterLeicesterEngland

Personalised recommendations