Skip to main content

General Genetic Recombination of Bacterial Plasmids

  • Chapter
Plasmids in Bacteria

Abstract

Analysis of genetic recombination between 2 chromosomes, which differ from each other by at least 2 genetic markeŕs, is based mainly on the production of recombinants which are phenotypically distinguishable from their progenitors. The use of small DNA molecules such as bacterial plasmids as recombination substrates provides an additional handle for the investigation of recombination. It also allows the description of recombination events in molecular terms. Recombination of 2 plasmids, genetically distinguishable from each other, can be followed as recombination reactions in other systems by monitoring changes in the phenotypic expression of the plasmid genes (1,2,3). But in addition, plasmidic recombination may be investigated by analyzing changes of their molecular structures. Interplasmidic recombination leads to the formation of plasmid oligomers and intraplasmidic recombination between repeated sequences can lead to deletion of the region between the crossing-over sites, and, when the recombination substrate is an oligomer, to monomerization. When mutations affect restriction endonuclease sites, recombination products may be compared to recombination substrates by restriction endonculease analysis (2,4,5). The small size of bacterial plasmids also allows the isolation and characterization of molecular intermediates of the recombination pathway (6,7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Willetts, N.S. (1975) Recombination and the Escherichia coli K-12 sex factor F. J. Bact. 121: 36–43.

    PubMed  CAS  Google Scholar 

  2. Laban, A., and A. Cohen (1981) Interplasmidic and intraplasmidic recombination in Escherichia coli K-12. Mol. Gen. Genet. 184: 200–207.

    PubMed  CAS  Google Scholar 

  3. Fishel, R.A., A.A. James, and R. Kolodner (1981) RecA independent general recombination of plasmids. Nature 294: 184–186.

    Article  PubMed  CAS  Google Scholar 

  4. Doherty, M.J., P.T. Morrison, and R. Kolodner (1983) Genetic recombination of bacterial plasmid DNA. Physical and genetic analysis of the products of plasmid recombination in Escherichia coli. J. Mol. Biol. 167: 539–560.

    Article  PubMed  CAS  Google Scholar 

  5. Laban, A., Z. Silberstein, and A. Cohen (1984) The effect of non-homologous DNA sequences on interplasmidic recombination. Genetics (in press).

    Google Scholar 

  6. Potter, H., and D. Dressier (1976) On the mechanism of genetic recombination: Electron microscopic observation of recombination intermediates. Proc. Natl. Acad. Sci., USA 73: 3000–3004.

    Article  PubMed  CAS  Google Scholar 

  7. James, A.A., P.T. Morrison, and R. Kolodner (1982) Genetic re-combination of bacterial plasmid DNA. Analysis of the effect of recombination-deficient mutations on plasmid recombination. J. Mol. Biol. 160: 411–430.

    Article  PubMed  CAS  Google Scholar 

  8. Cohen, A., and A. Laban (1983) Plasmidic recombination in Escherichia coli K-12: The role of recF gene function. Mol. Gen. Genet. 189: 471–474.

    Article  PubMed  CAS  Google Scholar 

  9. James, A.A., P.T. Morrison, and R. Kolodner (1982) Isolation of genetic elements that increase frequencies of plasmid recombinants. Nature 303: 256–259.

    Article  Google Scholar 

  10. Jones, I.M., S.B. Primrose, and S.D. Ehrlich (1982) Recombination between short direct repeats in a recA host. Mol. Gen. Genet. 188: 486–489.

    Article  PubMed  CAS  Google Scholar 

  11. Albertini, A.M., M. Hofer, M.P. Calos, and J. Miller (1982) On the formation of spontaneous deletions: The importance of short sequence homologies in the generation of large deletions. Cell 29: 319–328.

    Article  PubMed  CAS  Google Scholar 

  12. Brutlag, D., K. Fry, T. Nelson, and P. Hung (1977) Synthesis of hybrid bacterial plasmids containing highly repeated satellite DNA. Cell 10: 509–519.

    Article  PubMed  CAS  Google Scholar 

  13. Cramer, J.H., F.W. Farrelly, J.T. Barnitz, and R.H. Rownd (1977) Construction and restriction endonuclease mapping of hybrid plasmids containg S. cerevisiae ribosomal DNA. Mol. Gen. Genet. 151: 229–244.

    Article  PubMed  CAS  Google Scholar 

  14. Cohen, A., D. Ram., H.O. Halverson, and P.L. Wensink (1978) Deletions within E. coli plasmids carrying yeast rDNA. Gene 3: 135–147.

    Article  CAS  Google Scholar 

  15. Perricauset, M., A. Fritsch, U. Pattersson, L. Philipson, and P. Thiollais (1977) Excision and recombination of adenovirus DNA fragments in Escherichia coli. Science 196: 208–210.

    Article  Google Scholar 

  16. Case, S.T. (1982) Selective deletion of large segments of Balbiani ring DNA during molecular cloning. Gene 20: 169–176.

    Article  PubMed  CAS  Google Scholar 

  17. Keshet, E., and Y. Shaul (1981) Terminal direct repeats in a retrovirus-like repeated mouse gene family. Nature 289: 83–85.

    Article  PubMed  CAS  Google Scholar 

  18. McClements, W.L., L.W. Enquist, M. Oskarsson, M. Sullivan, and G.F. Vande Woude (1980) Frequent site-specific deletion of Coliphage X murine sarcoma virus recombinants and its use in the identification of a retrovirus integration site. J. Virol. 35: 488–497.

    PubMed  CAS  Google Scholar 

  19. Prichard, R.H., and N.B. Grover (1981) Control of Plasmid Replication and its Relationship to Incompatibility. In Molecular Biology, Pathogenicity, and Ecology of Bacterial Plasmids, S.B. Levi, R.C. Clowes, and E.L. Koenig, eds. Plenum Press, New York, pp. 271–278.

    Google Scholar 

  20. Austin, S., M. Ziese, and N. Sternberg (1981) A novel role for site-specific recombination in maintenance of bacterial replicons. Cell 25: 729–736.

    Article  PubMed  CAS  Google Scholar 

  21. Hakkaart, M.J.J., E. Veltkamp, and H.J.J. Nijkamp (1982) Maintenance of the bacteriocinogenic plasmid Clo DF13 in Escherichia coli cells. II. Specific recombination functions involved in plasmid maintenance. Mol. Gen. Genet. 188: 338–344.

    Article  PubMed  CAS  Google Scholar 

  22. Hakkaart, M.J.J., P.J.M. van den Elzen, E. Veltkamp, and H.J.J. Nijkamp (1984) Maintenance of multicopy plasmid Clo DF13 in E. coli cells: Evidence for site-specific recombination at parB. Cell 36: 203–209.

    Article  PubMed  CAS  Google Scholar 

  23. Holliday, R. (1964) A mechanism for gene conversion in fungi. Genet. Res. 5: 282–304.

    Article  Google Scholar 

  24. Amati, P., and M. Meselson (1965) Localized negative interference in bacteriolophage λ. Genetics 51: 369–379.

    PubMed  CAS  Google Scholar 

  25. Meselson, M. (1967) The Molecular Basis of Genetic Recombination. In Heritage from Mendel, R.A. Brink, ed. The University of Wisconsin Press, Madison, pp. 81–104.

    Google Scholar 

  26. Fox, M.S. (1978) Some features of genetic recombination in pro-caryotes. Ann. Rev. Genet. 12: 47–68.

    Article  PubMed  CAS  Google Scholar 

  27. Chang, A.C.Y., and S.N. Cohen (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bact. 134: 1141–1156.

    PubMed  CAS  Google Scholar 

  28. Bolivar, F., R.L. Rodriguez, P.J. Green, M.C. Betlach, H.L. Heyneker, H.W. Boyer, J.H. Crosa, and S. Falkow (1977) Construction and characterization of new cloning vehicles. II. A multi-purpose cloning system. Gene 2: 95–113.

    Article  PubMed  CAS  Google Scholar 

  29. Meselson, M.S., and C.M. Radding (1975) A general model for genetic recombination. Proc. Natl. Acad. Sci., USA 72: 358–361.

    Article  PubMed  CAS  Google Scholar 

  30. Lichten, M., and M.S. Fox (1983) Effect of non-homology on bacteriophage lambda recombination. Genetics 103: 5–22.

    PubMed  CAS  Google Scholar 

  31. Bianchi, M.E., C. DasGupta, and C.M. Radding (1983) Insertions, deletions and mismatches in heteroduplex DNA made by RecA protein. Cell 34: 931–939.

    Article  PubMed  CAS  Google Scholar 

  32. Clark, A.J. (1973) Recombination deficient mutants of J E. coli and other bacteria. Ann. Rev. Genet. 7: 67–86.

    Article  PubMed  CAS  Google Scholar 

  33. Kaiser, K., and N.E. Murray (1979) Physical characterization of the “rac prophage.” Mol. Gen. Genet. 175: 159–174.

    Article  PubMed  CAS  Google Scholar 

  34. Barbour, S.D., H. Nagaishi, A. Templin, and A.J. Clark (1970) Biochemical and genetic studies of recombination proficiency in Escherichia coli. II. Rec revertants caused by indirect suppression of Rec mutations. Proc. Natl. Acad. Sci., USA 67: 128–135.

    Google Scholar 

  35. Kushner, S.R., H. Nagaishi, and A.J. Clark (1972) Indirect suppression of recB and recC mutations by exonuclease I deficiency. Proc. Natl. Acad. Sci., USA 69: 1366–1370.

    Article  PubMed  CAS  Google Scholar 

  36. Gillen, J.R., D.K. Willis, and A.J. Clark (1981) Genetic analysis of the RecE pathway of genetic recombination in Escherichia coli K-12. J. Bact. 145: 521–532.

    PubMed  CAS  Google Scholar 

  37. Horii, Z.I., and A.J. Clark (1973) Genetic analysis of the RecF pathway of genetic recombination in Echerichia coli K-12. Isolation and characterization of mutants. J. Mol. Biol. 80: 327–344.

    Article  PubMed  CAS  Google Scholar 

  38. Lloyd, R.G., S.M. Picksley, and C. Prescott (1983) Inducible expression of a gene specific to the RecF pathway. Mol. Gen. Genet. 190: 162–167.

    Article  PubMed  CAS  Google Scholar 

  39. Gillen, J., and A.J. Clark (1974) The recF pathway of bacterial recombination. In Mechanism in Recombination, R.F. Grell, ed. Plenum Press, New York, pp. 123–136.

    Google Scholar 

  40. Kmiec, E., and W.K. Hollman (1981) β protein of bacteriophage λ promotes renaturation of DNA. J. Biol. Chem. 256: 12636–12639.

    PubMed  CAS  Google Scholar 

  41. Karu, A.E., V. Mackay, P.S. Goldmark, and S. Linn (1973) The recBC deoxyribonuclease of Escherichia coli K-12. Substrate specificity and reaction intermediates. J. Biol. Chem. 248: 4874–4884.

    Google Scholar 

  42. Taylor, A., and G.R. Smith (1980) Unwinding and rewinding of DNA by the RecBC enzyme. Cell 22: 447–457.

    Article  PubMed  CAS  Google Scholar 

  43. Bresler, S.E., I.Y. Goryshin, and V.A. Lanzov (1981) The process of general recombination in Escherichia coli: Structure of intermediate products. Mol. Gen. Genet. 183: 139–143.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Cohen, A., Silberstein, Z., Broido, S., Laban, A. (1985). General Genetic Recombination of Bacterial Plasmids. In: Helinski, D.R., Cohen, S.N., Clewell, D.B., Jackson, D.A., Hollaender, A. (eds) Plasmids in Bacteria. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2447-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2447-8_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9487-0

  • Online ISBN: 978-1-4613-2447-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics