Chaos in Dissipative Quantum Systems

  • Robert Graham
Part of the NATO ASI Series book series (NSSB, volume 120)


We discuss two dissipative quantum systems, which are chaotic in the classical limit. The first system is a single-mode bad-cavity laser. It can be analyzed in the semi-classical limit where it reduces to the complex Lorenz model under the influence of classical external noise. The second system is an exactly solvable dissipative quantum map, which reduces to the Kaplan Yorke map in the classical limit. In both quantum systems the strange attractor of the classical system disappears, but the sensitive dependence on initial conditions remains.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.S. Gioggia, N.B. Abraham, Routes to Chaotic Output from a Single-Mode, dc-Excited Laser, preprint 1983Google Scholar
  2. 2.
    H. Haken, Laser Theory, Encyclopedia of Physics XXV/2c, ed. S. Fliigge, Springer, New York 1970Google Scholar
  3. 3.
    H. Risken, C. Schmid, W. Weidlich, Z. Physik 194, 337 (1966)Google Scholar
  4. 4.
    H. Haken, Phys. Lett. 53A, 77 (1975)CrossRefGoogle Scholar
  5. 5.
    E.J. Heller, J. Chem. Phys..65, 1289 (1976)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    M. Dorfle, R. Graham, Phys. Rev. A27, 1096 (1983)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    R. Graham, Phys. Rev. A, to appearGoogle Scholar
  8. 8.
    R. Graham, Quantum Noise and Strange Attractors, preprint 1983Google Scholar
  9. 9.
    J.L. Kaplan, J.A. Yorke, Lecture Notes in Math. 730, 228 (1979)MathSciNetCrossRefGoogle Scholar
  10. 10.
    D. Mayer, G. Roepstorff, J. Stat. Phys. 31, 309 (1983)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Robert Graham
    • 1
  1. 1.Fachbereich PhysikUniversität Essen GHSEssenW. Germany

Personalised recommendations