Skip to main content

Analytical Spectroscopy Using Laser Atomizers

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 119))

Abstract

In this article, laser as a source of thermal energy supplementing customary spectrochemical excitation sources will be treated. It is therefore necessary to first explain the properties of typical excitation sources. In optical spectrochemical analysis, chemical elements contained in a sample are determined with the help of their optical line spectra. This can only be done, if a representative part of a solid or liquid sample is first converted into atomic vapor. Free atoms can then either be determined with the help of their absorption spectra or, if suitably excited, with the help of their emission spectra. It is, of course, also possible to detect the elements with the help of ionized atoms either by atomic emission spectroscopy or by mass spectrometry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. H. Maiman, Stimulated optical radiation in ruby, Nature, 187:493 (1960).

    Article  ADS  Google Scholar 

  2. F. Brech and L. Cross, Optical micro-emission stimulated by a ruby MASER, Appl.Spectrosc., 16:59 (1962).

    Google Scholar 

  3. R. H. Scott and A. Strasheim, Laser emission excitation and spectroscopy, in:“Applied Atomic Spectroscopy”, Vol.1, E. L. Grove, ed., Plenum Press, New York and London (1978).

    Google Scholar 

  4. K. Laqua, Analytical spectroscopy using laser atomizers, in:“Analytical Laser Spectroscopy”, N. Omenetto, ed., John Wiley & Sons, New York, Chichester, Brisbane, Toronto (1979).

    Google Scholar 

  5. M. L. Petukh and A. A. Yankowskii, Atomic emission spectral analysis using lasers, Zh.Prikl.Spektrosk., 29:1109 (1978).

    ADS  Google Scholar 

  6. H. Moneke and L. Moenke-Blankenburg, “Laser Micro-Spectrochemical Analysis”, Adam Hilger, London (1973).

    Google Scholar 

  7. W. van Deijck, J. Balke, and F. J. M. J. Maessen, An assessment of the laser microprobe analyser as a tool for quantitative analysis in AES, Spectrochim.Acta, 35B:359 (1979).

    Google Scholar 

  8. G. Dimitrov, L. Nikolova, and Ya. Vasilev, Influence of the discharge gas on the emission and thermal characteristics of laser-induced microplasmas, Mikrochim.Acta, 1:503 (1979).

    Article  Google Scholar 

  9. G. Dimitrov and Ts. Maximova, Improvement of the reproducibility and sensitivity of laser microspectral analysis, Spectroscopy Letters, 14:737 (1981).

    Article  ADS  Google Scholar 

  10. E. K. Vul’fson, V. I. Dvorkin, and A. V. Karyakin, The problem of Vaporization of a substance in a laser jet, Zh.Prikl.Spektrosk., 32:414 (1980).

    Google Scholar 

  11. V. A. Ageev, A. V. Kolesnik, and A. A. Yankovskii, Laser determination of electroplating thickness, Zh.Prikl.Spektrosk., 26:360 (1977).

    Google Scholar 

  12. A. F. Bokhonov, V. S. Burakov, V. V. Zhukovskii, and A. A. Stavrov, Erosion due to radiation activity of lasers in the mode-locked regime, Zh.Prikl.Spektrosk., 26:821 (1977).

    ADS  Google Scholar 

  13. S. I. Anisimov, Ya. A. Imas, G. S. Romanov, and Yu. V. Khodyko, “The Effect of High Power Radiation on Metals”, (in Russian), Nauka, Moscow (1970).

    Google Scholar 

  14. M. F. Stel’makh, “Lasers in Technology”, (in Russian), Energiya, Moscow (1975).

    Google Scholar 

  15. S. P. Atamanova, LMA-1 apparatus for the microspectral analysis of certain minerals found in the Kolsk Peninsula, Zh.Prikl.Spektrosk., 32:202 (1980).

    Google Scholar 

  16. M. L. Petukh, A. D. Shirokanov, and A. A. Yankovskii, Use of laser pulses with electric discharges for atomic absorption analysis, Zh.Prikl.Spektrosk., 32:414 (1980).

    Google Scholar 

  17. A. A. Yankovskii, “Quantum Electronics and Laser Spectroscopy”, (in Russian), Nauka i Tekhnika, Minsk, (1979).

    Google Scholar 

  18. A. N. Zaidel, G. V. Ostrovskaya, and Yu. I. Ostrovskii, “Technique and Application of Spectroscopy”, (in Russian), Nauka, Moscow (1972).

    Google Scholar 

  19. V. A. Ageev, A. V. Kolesnik, and A. A. Yankovskii, Possibility of limiting the migration of current-carrying discharge channels by a laser bean, Zh.Prikl.Spektrosk., 26:417 (1977).

    Google Scholar 

  20. W. Maul and W. Quillfeldt, Homogeneity investigation with the LMA 10 laser microspectral analyser, Jena Review 22:234 (1977).

    Google Scholar 

  21. E. Litz, Staubanalysen mit dem laser-mikrospektral-analysator LMA 10, Jenaer Rundschau, 5:237 (1977).

    Google Scholar 

  22. L. G. Bachurina, V. M. Perminova, and S. A. Savostin, Spectral micro-analysis with laser and plasma excitation of the spectra, Zavodsk.Lab., 45:1113 (1979).

    Google Scholar 

  23. D. E. Maksimov, N. K. Rudnevskii, V. P. Ryabchikova, and E. N. Pryanichnikova, Laser spectral micro-analysis of welded seams, Zavodsk.Lab., 45:333 (1979).

    Google Scholar 

  24. D. E. Maksimov, N. K. Rudnevskii, V. P. Ryabchikova, S. M. Chekhonin, I. V. Shlyapnikov, and I. S. Shklyaeva, LMA-1 laser micro-analyzer applied to welds in alloy steels, Zavodsk.Lab., 43:445 (1977).

    Google Scholar 

  25. M. B. Kozik, Modification of a quantitative laser-spectrographic method of determination of cations contained in tissue slices, Folia Histochem.Cytochem., 17:153 (1979).

    Google Scholar 

  26. W. Klimecki, Local spectral analysis and lasers, Chem.Anal. (Warsaw), 23:3 (1978).

    Google Scholar 

  27. R. M. Manabe, Effects of atmospheric pressure on line widths and spatial distributions of transient AA signals of minor constituents in metal samples atomized by a dye laser micro-probe, Dissertation, Oregon State University (1977).

    Google Scholar 

  28. M. B. Kozik, Laser-spectrographic study on the contents of metals in brains of patients with arteriosclerotic dementia, Folia Histochem.Cytochem., 16:31 (1978).

    Google Scholar 

  29. R. S. Adrain, R. C. Klewe, and E. J. Ormerod, Robust portable computerized laser-microspectrograph, in:Conf. Proceed. “Electro-Optics Laser International ’80”, ICP Science and Technology Press, Ltd.

    Google Scholar 

  30. R. S. Adrain, D. R. Airey, R. C. Klewe, and E. J. Ormerod, Trace element line intensities in laser produced metal vapor plasmas, Private communications.

    Google Scholar 

  31. R. S. Adrain, J. Watson, P. H. Richards, and A. Maitland, Laser microspectral analysis of steels, Opt.Laser Technol., 12:137 (1980).

    Article  ADS  Google Scholar 

  32. H. Uchida and K. Iwasaki, Laser-microprobe spectroscopy for trace elements concentrated on filter-paper after solvent extraction, Bunseki Kagaku, 25:752 (1976).

    Article  Google Scholar 

  33. T. Ishizuka, Y. Uwamino, and H. Sunahara, Laser-vaporized atomic absorption spectrometry of solid samples, Anal.Chem., 49:1339 (1977).

    Article  Google Scholar 

  34. J. Kozak, Correction for the volume of vaporized material in laser spectral analysis, Chem.Listy., 71:424 (1977).

    Google Scholar 

  35. M. Hufner, Using the KSR 4200 small process-control computer with laser emission spectrochemical analysis, Jena Review, 21:312 (1976).

    Google Scholar 

  36. J. M. Green, W. T. Silfvast, and O. R. Wood, Evolution of a Co2-laser produced Cadmium plasma, J.Appl.Phys., 48:2753 (1977).

    Article  ADS  Google Scholar 

  37. G. Dimitrov and I. Koleva, Investigations of sparking with the aid of a LMA-1 laser microspectral analyser, Chem.Anal. (Warsaw), 22:861 (1977).

    Google Scholar 

  38. E. Raitieri, M. Guerzoni, and G. Grammatica, Use of microprobe laser in emission spectrography, Met.Ital., 73:173 (1981).

    Google Scholar 

  39. Y. Talmi, H. P. Sieper, and L. Moenke-Blankenburg, Laser micro-probe elemental determinations with an optical multichannel detection system, Anal.Chim.Acta, 127:71 (1981).

    Article  Google Scholar 

  40. A. V. Karyakin, E. K. Vul’fson, and A. F. Yanushkevich, “Uber die Moglickeiten und Grenzen der Anwendung des Laser Atomis- ators fur die Analyse fester Proben”, Publ. Technische Hochschule Karl-Marx-Stadt (1976).

    Google Scholar 

  41. J. Mohr, Probenkammer mit versorgungseinheit zum laser mikro-spektral analysator LMA 10, Jenaer Rundschau, 24:245 (1979).

    Google Scholar 

  42. T. Ishizuka and Y. Uwamino, Atomic emission spectrometry of solid samples with laser vaporization-microwave-induced plasma system, Anal.Chem., 52:125 (1980).

    Article  Google Scholar 

  43. K. Sumino, R. Yamamoto, F. Hatayama, S. Kitamura, and H. Itoh, Laser atomic absorption spectrometry for histochemistry, Anal.Chem., 52:1064 (1980).

    Article  Google Scholar 

  44. K. Dittrich and R. Wennrich, AAS using laser vaporization followed by ETA, Spectrochim.Acta, 35B:731 (1980).

    ADS  Google Scholar 

  45. E. K. Wulfson, W. I. Dworkin, and A. W. Karyakin, Measurements on the thermal conditions in the vapor cloud produced by laser impact on graphite, Spectrochim.Acta., 35B:11 (1980).

    ADS  Google Scholar 

  46. R. M. Manabe and E. H. Piepmeier, Time and spatially resolved atomic absorption measurements with a dye-laser plume atomizer and pulsed hallow-cathode lamps, Anal.Chem., 51:2066 (1979).

    Article  Google Scholar 

  47. W. Quillfeldt, Combination of AAS and AES with the laser spectrometer LMA 10, Jena Review, 23:226 (1978).

    Google Scholar 

  48. A. Quentmeier, K. Laqua, and W. -D. Hagenah, Atomic-absorption spectrometry by laser-radiation evaporation of solid samples. I. Optimization of experimental parameters, Spectrochim.Acta, 34B:117 (1979).

    Article  ADS  Google Scholar 

  49. A. Quentmeier, K. Laqua, and W. -D. Hagenah, Atomic absorption spectroscopy of solid samples using evaporation by laser radiation. II. Analytical applications, Spectrochim.Acta, 35B:139 (1980).

    ADS  Google Scholar 

  50. F. Leis and K. Laqua, Emission spectrometric analysis using microwave excitation of a vapor cloud produced by laser impact on a solid. I. Principles of the method and experimental realization, Spectrochim.Acta, 33B:727 (1978).

    ADS  Google Scholar 

  51. F. Leis and K. Laqua, Emission spectrometric analysis using microwave excitation of a vapor cloud produced by laser impact on a solid. II. Analytical applications, Spectrochim. Acta, 34B:307 (1979).

    ADS  Google Scholar 

  52. R. M. Measures and H. S. Kwong, Tablaser:trace (element) analyser based on laser ablation and selectively excited radiation, Appl.Opt., 18:281 (1979).

    Article  ADS  Google Scholar 

  53. H. Nickel, F. A. Peuser, and M. Mazurkiewicz, Evaporation of material and influence of auxiliary spark gap on the spectral excitation by means of laser emission spectroscopy for local analysis of graphite, Spectrochim.Acta, 33B:675 (1978).

    ADS  Google Scholar 

  54. H. Nickel, F. A. Peuser, M. Mazurkiewicz, and W. Dörge, Quantitative mikroanalyse von reaktorgrafit mit hilfe der laser- emissions-spektroskopie, Jenaer Rundschau, 5:199 (1979).

    Google Scholar 

  55. S. O. Baisane, V. S. Chincholkar, and B. N. Maltor, Laser mikro-spektralanalyse einige forensische applikationen, Jenaer Rundschau, 5:206 (1979).

    Google Scholar 

  56. M. Thompson, J. G. Goulter, and F. Sieper, Verdampfung fester proben im laserstrahl des LMA 10 und ihre zuführung in induktiv-gekoppeltes plasma (ICP) für die atom-emissions- spektrometrie, Jenaer Rundschau, 5:202 (1981).

    Google Scholar 

  57. M. Thompson, J. G. Goulter, and F. Sieper, Laser ablation for the introduction of solid samples into an inductively coupled plasma for atomic-emission spectrometry, Analyst., 106:32 (1981).

    Article  ADS  Google Scholar 

  58. R. M. Measures and H. S. Kwong, Trace Element laser micro-analyser with freedom from chemical matrix effect, Anal. Chem., 51:428 (1979).

    Article  Google Scholar 

  59. D. C. Smith, Laser radiation-induced air breakdown and plasma shielding, Opt.Engineering, 20:962 (1981).

    Google Scholar 

  60. Kh. I. Zil’bershtein, Modern light sources for analysis of optical emission spectra, Zavodsk.Lab., 46:1095 (1980).

    Google Scholar 

  61. R. E. Honig and J. R. Woolston, Laser-induced emission of electrons, ions and neutral atoms from solid surfaces, Appl. Phys.Lett., 2:138 (1963).

    Article  ADS  Google Scholar 

  62. R. J. Conzemius and J. M. Capellen, A review of the application to solids of the laser ion source in mass spectrometry, Int. J.Mass Spectrom.Ion Phys., 34:197 (1980).

    Article  Google Scholar 

  63. J. A. J. Jansen and A. W. Witmer, Spark source mass-spectrometry in the research laboratories of an electronic industry, Fresenius Z.Anal.Chem., 309:262 (1981).

    Article  Google Scholar 

  64. J. A. J. Jansen and A. W. Witmer, Quantitative inorganic analysis by Q-switched laser mass spectroscopy, Spectrochim.Acta, 37B:483 (1982).

    ADS  Google Scholar 

  65. E. Denoyer, R. van Grieken, F. Adams, and D. F. S. Natusch, Laser microprobe mass spectrometry. I. Basic principles and performance characteristics, Anal.Chem., 54:26A (1982).

    Article  Google Scholar 

  66. F. Hillenkamp, E. Unsöld, R. Kauffmann, and R. Nitsche, Laser microprobe mass analysis of organic materials, Nature, 256:119 (1975).

    Article  ADS  Google Scholar 

  67. M. H. R. Hutchinson, Excimer and Excimer Lasers, Appl.Phys., 21:15 (1980).

    Article  Google Scholar 

  68. P. Boissel, G. Hauchecorne, F. Kerteve, and G. Mayer, Optical elements using oscillating gazes, Opt.Communications, 4:44 (1971).

    Article  ADS  Google Scholar 

  69. J. F. Ready, “Effects of High-Power Laser Radiation”, Academic Press, New York and London, (1971).

    Google Scholar 

  70. V. G. Mossotti, K. Laqua, and W. -D. Hagenah, Laser-micro-analysis by atomic absorption, Spectrochim.Acta, 23B:197 (1967).

    ADS  Google Scholar 

  71. T. Dingle and B. Griffith, A laser ion mass analyser (LIMA) for bulk samples with high spatial resolution and PPM hydrogen sensitivity, J.Phys.E, Scient.Instrum., 14:513 (1981).

    Google Scholar 

  72. U. Möde, Extension and enhancement of the spectral emission of radiation from samples vaporized by laser radiation, Ph.D. Thesis, Minister (1970).

    Google Scholar 

  73. W. J. Treytl, J. B. Orenberg, K. W. Marich, A. J. Saffir, and D. Glick, Detection limits in analysis of metals in biological materials by laser microprobe optical emission spectrometry, Anal.Chem., 44:1903 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Laqua, K. (1985). Analytical Spectroscopy Using Laser Atomizers. In: Martellucci, S., Chester, A.N. (eds) Analytical Laser Spectroscopy. NATO ASI Series, vol 119. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2441-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2441-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9484-9

  • Online ISBN: 978-1-4613-2441-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics