Parsimonious Systems Description: A Necessary First Step in the Development of Predictive Indicators

  • E. O. Attinger


This chapter deals with some of the problems inherent in the development of predictive models designed for the use of decision makers, particularly in the areas of medicine and health care. The need for such models is based on the realisation that neither individual nor societal problems can any longer be considered in isolation, because the manner in which particular solutions are sought affects, in general, much larger populations than those struggling directly with the problem under consideration (Attinger and Theodoridis, 1975). In decision theory these “side effects” are called opportunity cost and reflect the cost of those material and non-material resources that are no longer available for general needs once they have been committed to the solution of a specific problem.


Cardiac Output Multidimensional Scaling Minute Ventilation Respiratory Variable Hierarchy Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J. M., Del Presto, P. V., Anne, A., and Attinger, E. O., 1977, Techniques in the consolidation, characterization and expression of physiologic signals in the time domain, Proc. IEEE, 65: 689.CrossRefGoogle Scholar
  2. Ahuja, D., 1978, “Correlates of Health Indicators”, Ph.D. Thesis, University of Virginia.Google Scholar
  3. Alonso, W., 1968, Predicting best with imperfect data, J. Am. Inst. Plan., 34: 248.CrossRefGoogle Scholar
  4. Anderson, O. W.,and Shields, M. C., 1982, Quality measurement and control in physician decision making: state of the art, Health Services Res., 17: 125.Google Scholar
  5. Andrews, D. F., 1972, Plots of high dimensional data, Biometrics, 28: 125.CrossRefGoogle Scholar
  6. Attinger, E. O., 1968, Analysis of pulsatile blood flow, Adv. Biomed. Eng. Med. Phys., 1: 1.PubMedGoogle Scholar
  7. Attinger, E. O., 1981, The high cost of modern medical technology, in: “Proc. 7th Brazilian Congress on Biomedical Engineering”: 139.Google Scholar
  8. Attinger, E. O., and Attinger, F. M. L., 1973, Hierarchy levels in the control of blood flow to the hind leg of the dog, Kybernetic, 13: 195.CrossRefGoogle Scholar
  9. Attinger, E. O., and Attinger, F. M. L., 1978, Changes in blood flow distribution during the application of multiple stress, in: “Dynamics and Regulation of Arterial System”, R. D. Bauer and R. Busse, eds., Springer-Verlag, Heidelberg:162.Google Scholar
  10. Attinger, E. O., and Attinger, F. M. L., 1982, Organizational aspects of cardiac control, in: “Cardiovascular System Dynamics. Models and Measurements”, T. Kenner, R. Busse and H. Hinghofer- Szalkay, eds., Plenum, New York:99.Google Scholar
  11. Attinger, E. O., and Theodoridis, G. C., 1975, Engineering approaches,to societal systems, Adv. Biomed. Eng., 5: 217.Google Scholar
  12. Attinger, E. O., Henry, D. T., Attinger, F. M. L., Adams, J. M., and Anne, A., 1978, Biological control hierarchies I: Simulations by a three-level ten-component adaptive model, IEEE Trans. Syst. Man and Cybern., SMC-8: 11.Google Scholar
  13. Attinger, E. O., Sugawara, H., Novaro, A., Mikami, T., and Martin, R., 1967, Flow patterns in the peripheral circulation of anesthetized dogs, Angiologica, 4: 1.PubMedGoogle Scholar
  14. Barnett, G. O., 1982, The computer and clinical judgement, N. Engl. J. Med., 307: 493.PubMedCrossRefGoogle Scholar
  15. Bergman, R. N., and Cobelli, C., 1980, Minimal modeling, partition analysis and the estimation of insulin sensitivity, Fed. Proc., 39: 110.PubMedGoogle Scholar
  16. Bleich, H. L., 1972, Computerbased consultation: Electrolyte and acidbase disorders, Am. J. Med., 53: 285.PubMedCrossRefGoogle Scholar
  17. Blois, M. S., 1980, Clinical judgement and computers, N. Engl. J. Med., 303: 192.PubMedCrossRefGoogle Scholar
  18. Breslow, L., 1972, A quantitative approach to the WHO definition of health, Int. J. Epidemiol., 1: 347.PubMedCrossRefGoogle Scholar
  19. Diaconis, P., and Efron, B., 1983, Computer intensive methods in statistics, Sci. Am., 248 (May): 96.CrossRefGoogle Scholar
  20. Duda, R. O., and Shortliffe, E. H., 1983, Expert systems research, Science, 220: 261.PubMedCrossRefGoogle Scholar
  21. Eddy, D. M., and Clanton, C. H., 1982, The art of diagnosis, N. Engl. J. Med., 306: 1263.PubMedCrossRefGoogle Scholar
  22. Engle, R. L., and Davis, B. J., 1963, Medical diagnosis, present, past and future, Arch. Intern. Med., 112: 512.PubMedGoogle Scholar
  23. Forgenstern, O., 1963, “On the Accuracy of Economic Observations”, Princeton University Press, Princeton.Google Scholar
  24. Friedman, R. B. and Gustafson, D. H., 1977, Computers in clinical medicine: a critical review, Comput. Biomed. Res., 10: 199.PubMedCrossRefGoogle Scholar
  25. Frye, R. L., and Frommer, P. L., 1982, Consensus development con-ference on coronary bypass surgery, Circulation, 65 (suppl. 2).Google Scholar
  26. Gardner, H. R., and Ashby, W. R., 1970, Connectance of large dynamic systems: critical values of stability, Nature, 228: 784.PubMedCrossRefGoogle Scholar
  27. Garfinkel, D., 1980, Computer modeling, complex biological systems and their simplification, Am. J. Physiol., 239: R1.PubMedGoogle Scholar
  28. Glantz, S. A., 1980, Biostatistics: how to detect, correct and prevent errors in the medical literature, Circulation, 61: 1.PubMedGoogle Scholar
  29. Goldman, L., Weinberg, M., Weisberg, M., Olshen, R., Cook, E. F., Sargent, K., Lamas, G. A., Dennis, C., Wilson, C., Deckel-baum, L., Fineberg, H., and Stiratelli, R., 1982, A computer derived protocol to aid in the diagnosis of emergency room patients with acute chest pain, N. Engl. J. Med., 307: 588.PubMedCrossRefGoogle Scholar
  30. Goldman, L., Sayson, R., Robbins, S., Cohn, L. H., Bettmann, M., and Weisberg, M., 1983, The value of the autopsy in three medical eras, N. Engl. J, Med., 308: 1000.CrossRefGoogle Scholar
  31. Gong, G. D., 1982, “Cross-validation, The Jackknife and the Bootstrap: Excess Error Estimation in Forward Logistic Regression”, Ph.D. Thesis, Stanford University.Google Scholar
  32. Guyton, A. C., Coleman, T. G., and Granger, H. J., 1972, Circulation: overall regulation, Annu. Rev. Physiol., 34: 13.CrossRefGoogle Scholar
  33. Hocking, R. R., 1983, Developments in linear regression methodology, 1959-1982, Technometrics, 25: 219.CrossRefGoogle Scholar
  34. Kahn, H., and Wiener, A. J., 1967, “The Year 2000”, Macmillan, New York.Google Scholar
  35. Keyfitz, N., 1979, Understanding world models, Behav. Sci., 24: 190.CrossRefGoogle Scholar
  36. Koran, L. M., 1975, The reliability of clinical methods, data and judgements, N. Engl. J. Med., 293:642 and 695.PubMedCrossRefGoogle Scholar
  37. Kruskal, J. B., 1964, Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis, Psychometrika, 29:1 and 115.CrossRefGoogle Scholar
  38. Levy, M. N., 1976, Cardiac and vascular factors that determine systemic blood flow, Circ. Res., 44: 739.Google Scholar
  39. McCall, V., 1983, Ambulatory monitoring of blood pressure, presented at “18th Annual Meeting of the Association for the Advancement of Medical Instrumentation”, Dallas.Google Scholar
  40. Mountford, M. D., 1969, A test of difference between clusters, in: “Statistical Ecology”, G. P. Patil, ed., Pennsylvania State University Press, University Park, PA.:237.Google Scholar
  41. Pennock, B., and Attinger, E. O., 1968, Optimization of the oxygen transport system, Biophys. J., 8: 879.PubMedCrossRefGoogle Scholar
  42. Rompelman, O., and Kitney, R. I. (eds.), 1983, Analysis of heart rate variability and blood pressure fluctuations, Automedica, 4(4).Google Scholar
  43. Shortliffe, E. H., Buchanan, B. G., and Feigenbaum, E. A., 1979, Knowledge engineering for medical decision making, Proc. IEEE, 67: 1207.CrossRefGoogle Scholar
  44. Siegel, J. H., Farrell, E. J., Fichthorn, J., Lajos, T. Z., Lee, A.B. Schimert, G., and Eberhardt, R. C., 1975, The use of multivariate trajectories in defining normal and abnormal time courses of recovery after coronary bypass surgery, J. Surg. Res., 18: 341.PubMedCrossRefGoogle Scholar
  45. Smith, O. A., Astley, C. A., De Vito, J. L., Stein, J. M., and Walsh, K. E., 1980, Functional analysis and hypothalamic control of the cardiovascular responses accompanying emotional behavior, Fed. Proc., 39: 2487.PubMedGoogle Scholar
  46. Stone, M., 1974, Cross-validatory choice and assessment of statistical predictions, J. R. Stat. Soc., B36: 111.Google Scholar
  47. Szolovits, P., and Pauker, S. G., 1978, Categorical and probabilistic reasoning in medical diagnosis, Artif. Intell., 11: 115.CrossRefGoogle Scholar
  48. Tatum, E. L., 1967, Molecular biology, nucleic acids and the future of medicine, in: “Reflections on Research and the Future of Medicine”, C. F. Lyght, ed., McGraw-Hill, New York.Google Scholar
  49. Tversky, A., and Kahneman, D., 1981, The framing of decisions and the psychology of choice, Science, 211: 453.PubMedCrossRefGoogle Scholar
  50. Yamamoto, W. S., and Walton, E. S., 1975, On the evolution of the physiological model, Annu. Rev. Biophys. Bioeng., 4: 81.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • E. O. Attinger

There are no affiliations available

Personalised recommendations