Skip to main content

Influence of Gel and Solute Structure on In Vitro and In Vivo Release Kinetics From Hydrogels

  • Chapter
Polymers as Biomaterials

Abstract

Drug release kinetics from polymer implants in vivo are influenced by the rate of drug diffusion within the polymer, and by the nature of the medium surrounding the implant. Our previous work has investigated the influence of gel structure on the diffusion characteristics of solutes through poly(2-hydroxyethyl methacrylate) (polyHEMA) hydrogels (1). The diffusion mechanism was found to be influenced by the nature of the water within the gel, and the average pore size of the network. Sorption of solutes was reported to have a marked effect on network structure (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.M. Wood, D. Attwood, and J.H. Collett, The Influence of Gel Formulation on Diffusion of Salicylic Acid in PolyHEMA Hydrogels. J. Pharm. Pharmacol. 34: 1 (1982)

    Article  CAS  Google Scholar 

  2. J.M. Wood, D. Attwood, and J.H. Collett, The Swelling Properties of Poly (2-Hydroxyethy1 Methacrylate) Hydrogels Polymerized by Gamma-Irradiation and Chemical Initiation. Int. J. Pharm. 7: 189 (1981)

    Article  CAS  Google Scholar 

  3. J.H. Collett, J.A. Rees, and N.A. Dickinson, Some Parameters Describing the Dissolution Rate of Salicylic Acid at Controlled pH. J. Pharm. Pharmacol. 24: 724 (1972)

    Article  CAS  Google Scholar 

  4. H. Fessi, J.P. Marty, F. Puisieux, and J.T. Carstensen, Square Root of Time Dependence of Matrix Formulations with Low Drug Content. J. Pharm. Sci. 71: 749 (1982).

    Article  CAS  Google Scholar 

  5. S.K. Chandrasekaran and R. Hillman, Heterogeneous Model of Drug Release from Polymeric Matrix. J. Pharm. Sci. 69: 1311 (1980)

    Article  CAS  Google Scholar 

  6. R.H. Guy and J. Hadgraft, Theoretical Comparison of Release Rates of Drugs into Sink and Nonsink Conditions. J. Pharm. Sci. 70: 1243 (1981)

    Article  CAS  Google Scholar 

  7. T.J. Roseman and W.I. Higuchi, Release of Medroxyprogesterone Acetate from a Silicone Polymer. J. Pharm. Sci. 59: 353 (1970)

    Google Scholar 

  8. J. Cobby, M. Mayersohn, and G.C. Walker, Influence of Shape Factors on Kinetics of Drug Release from Matrix Tablets I: Theoretical. J. Pharm. Sci. 63: 725 (1974)

    Article  CAS  Google Scholar 

  9. P.I. Lee, Diffusional Release of a Solute from a Polymeric Matrix — Approximate Analytical Solutions. J. Membr. Sci. 7: 255 (1980)

    Article  CAS  Google Scholar 

  10. T. Higuchi, Rate of Release of Medicaments from Ointment Bases Containing Drugs in Suspension. J. Pharm. Sci. 50: 874 (1961)

    Article  CAS  Google Scholar 

  11. Y.W. Chien and H.J. Lambert, Differentiation between Partition — Controlled and Matrix — Controlled Drug Release Mechanisms. J. Pharm. Sci. 63: 515 (1974)

    Article  CAS  Google Scholar 

  12. N. Weiss, T. van Vliet, and A. Silberberg, Influence of Polymerization Initiation Rate on Permeability of Aqueous Poly-acrylamide Gels. J. Polym. Sci., Polym. Phys. Ed. 19: 1505 (1981)

    Article  CAS  Google Scholar 

  13. S.Z. Song, Hydrogel Devices for Controlled Drug Release, Ph.D. Thesis, University of Utah, (1980)

    Google Scholar 

  14. J. Hadgraft and R.H. Guy, Calculations of Drug Release Rates from Cylinders. Int. J. Pharm. 8: 159 (1981)

    Article  Google Scholar 

  15. J. Hadgraft, Calculations of Drug Release Rates from Controlled Release Devices. The Slab. Int. J. Pharm. 2: 177 (1979)

    Article  CAS  Google Scholar 

  16. J.M. Wood, D. Attwood, and J.H. Collett, Characterization of PolyHEMA Gels. Drug Dev. Ind. Pharm. 9: 93 (1983)

    Article  CAS  Google Scholar 

  17. J.H. Collett, D. Attwood and J.M. Wood, Influence of Gel Structure on Diffusion through PolyHEMA Gels. J. Pharm. Pharmacol. 33: 60P (1981)

    Article  Google Scholar 

  18. E.S. Lee, S.W. Kim, S.H. Kim, J.R. Cardinal, and H. Jacobs, Drug Release from Hydrogel Devices with Rate-Controlling Barriers. J. Membr. Sci. 7: 293 (1980)

    Article  CAS  Google Scholar 

  19. Y.W. Chien, S.E. Mares, J. Berg, S. Huber, H.J. Lambert and K.F. King, In Vitro — In Vivo Correlation for Intravaginal Release of Ethynodiol Diacetate from Silicone Devices in Rabbits. J. Pharm. Sci. 64: 1776 (1975)

    Article  CAS  Google Scholar 

  20. Y.W. Chien and E.P.K. Lau, In Vitro — In Vivo Correlation of Subcutaneous Release of Norgestomet from Hydrophilic Implants. J. Pharm. Sci. 65: 488 (1976)

    Article  CAS  Google Scholar 

  21. T.J. Roseman and S.H. Yalkowsky, Importance of Solute Partitioning on the Kinetics of Drug Release from Matrix Systems, in: “Controlled Release Polymeric Formulations”, D.R. Paul and F.W. Harris, eds., A.C.S. Symp. Ser. 33, Washington D.C. (1976)

    Google Scholar 

  22. H.A. Nash, D.N. Robertson, A.J.M. Young, and L.E. Atkinson, Steroid Release from Silastic Capsules and Rods. Contraception 18: 367 (1978)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Wood, J.M., Attwood, D., Collett, J.H. (1984). Influence of Gel and Solute Structure on In Vitro and In Vivo Release Kinetics From Hydrogels. In: Shalaby, S.W., Hoffman, A.S., Ratner, B.D., Horbett, T.A. (eds) Polymers as Biomaterials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2433-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2433-1_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9480-1

  • Online ISBN: 978-1-4613-2433-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics