Skip to main content

Potassium Ion Transport through Hydrogel Membranes in the Presence of Blood Components: Plasma Proteins

  • Chapter
Polymers as Biomaterials

Abstract

A mathematical model and conceptualization of membrane ion transport by diffusion and phase transfer as coupled to adsorbed protein associated ion specific adsorption has been developed. The model is verified by monitoring K+ transport through poly-(2-hydroxyethyl methacrylate) membranes in the presence of plasma in concentrations of 20, 50, 80 and 100% by volume. The transport data can be adequately described by the model where the surface oriented K+ is assumed to be constant and related to bulk protein content. Control studies provide a baseline value for an effective diffusion coefficient for K+, Deff, of 2.82 x 10−8 cm2/sec. The addition of plasma to the transport study solutions shows an increase in the transport of K+ such that the rate is exponentially related to plasma percent. Since the dimension of the albumin molecule is appropriate to reside in the surface convection layer (100 Å) and albumin itself is the majority protein in plasma, values of known albumin bulk concentrations and published surface concentrations are useful for extended analysis. The surface concentration of K+ at 100% plasma is 12.9 nEq/cm2 and the ratio of ion to protein is 4.3 Eq K+/mM albumin. These results provide insight into the role of protein adsorption to biomaterials as they relate to ion transport. The transport chamber approach is ideally suited to modification of the biomaterial interfacial microenvironment where, as in this study, the effects of plasma protein interactions are separated from cellular interactions. In medical devices, this phenomenon is important in the design of electrochemical blood chemistry sensors and artificial kidney membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akizawa, T., Koshikawa, S., Sasaki, K. and Nakabayashi, N., 1981, Development of ion-exchange membrane for an artificial kidney, Trans. Am. Soc. Artif. Intern. Organs., XXVII:644.

    Google Scholar 

  • Case, R. B., Felix, A. and Wachter, M., 1979, Measurement of myocardial pC0 with a microelectrode: Its relation to coronary sinus pC0, Am. J. Physiol., 236:H29.

    CAS  Google Scholar 

  • Cattrall, R. W., Tribuzio, S. and Freiser, H., 1974, Potassium ion responsive coated wire electrode based on Valinomycin, Anal. Chem., 46:2223.

    Article  CAS  Google Scholar 

  • Chen, R. Y. S., 1979, Electrolyte transport through crosslinked poly-(2-Hydroxyethylmethacrylate), I. Effects of anionic size and crosslinking content, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem., 20: 1005.

    CAS  Google Scholar 

  • Gold, M. I., Diaz, P. M., Feingold, A., Duarte, I., Sohn, Y. J. and Kallos, T., 1975, A disposable in vivo oxygen electrode for the continuous measurement of arterial oxygen tension, Surgery, 2:245.

    Google Scholar 

  • Hill, J. L ., 1981, Intravascular K sensitive electrodes for clinical monitoring, in: “Progress in Enzyme and Ion Selective Electrodes,” Lubbers, D. W., Acker, H., Buck, R. P., Eisenman, G., Kessler, M. and Simon, W., ed., Springer-Verlag, New York.

    Google Scholar 

  • Hill, J. L., Gettes, L. S., Lynch, M. R. and Hebert, N. C., 1978, Flexible valinomycin electrodes for on-line determination of intravascular and myocardial K, Am. J. Physiol., 225:H455.

    Google Scholar 

  • Horbett, T. A., 1981, Adsorption of proteins from plasma to a series of hydrophilic-hydrophobic copolymers. II. Compositional analysis with the prelabeled protein technique, J. Biomed, Mater. Res., 15:673.

    Article  CAS  Google Scholar 

  • Horbett, T. A. and Weathersby, P. K., 1981, Adsorption of proteins from plasma to a series of hydrophilic copolymers. I. Analysis with the in situ radio-iodination techniques, J. Biomed. Mater. Res., 15:403.

    Article  CAS  Google Scholar 

  • Langer, R., Brem, H. and Tapper, D., 1981, Biocompatibility of polymeric delivery systems for macromolecules, J. Biomed. Mater. Res., 15:267.

    Article  CAS  Google Scholar 

  • LeBlanc, O. H., Brown, J. F., Klebe, J. F., Niedrach, L. W., Slusarczuk, G. M. J. and Stoddard, W. H., 1976, Polymer membrane sensors for continuous intravascular monitoring of blood pH, J. App. Physiol., 40:644.

    CAS  Google Scholar 

  • Lee, K. H., Jee, J. G., Jhon, M. S. and Ree, T., 1978, Solute transport through crosslinked poly(2-hydroxyethylmethacrylate) membrane, J. Bioeng., 2:269.

    CAS  Google Scholar 

  • Lyman, D. J., Metcalf, L. C. Albo, D. Jr., Richards, K. F. and Lamb, J., 1974, The effect of chemical structure and surface properties of synthetic polymers on the coagulation of blood. III. In vivo adsorption of proteins on polymer surfaces, Trans. Amer. Soc. Artif. Int. Organs, XX:474.

    Google Scholar 

  • Margules, G. S., Hunter, C. M. and MacGregor, D. C., 1982, A hydrogel based in vivo reference electrode, J. Electrochem. Soc., 129:135c.

    Google Scholar 

  • Margules, G. S., Hunter, C. M. and MacGregor, D. C., 1982, A hydrogel based in vivo reference electrode catheter, Med. Biol. Eng. & Comp., 21:1.

    Article  Google Scholar 

  • McKinley, G. A., Saffle, J., Jordan, W. S., Janata, J., Moss, S. D. and Westerskow, D. R., 1980, In vivo continuous monitoring of K in animals using ISFET probes, Med. Instr., 14:93.

    CAS  Google Scholar 

  • Migliaresi, C., Nicodemo, L., Nicolais, L. and Passerini, P., 1981, Physical characterization of microporous poly(2-hydroxyethyl- methacrylate) gels, J. Biomed. Mater. Res., 15:307.

    Article  CAS  Google Scholar 

  • Pilla, A. A. and Margules, G. S., 1977, Dynamic interfacial electrochemical phenomena at living cell membranes: Application to the toad urinary bladder membrane system, J. Electrochem. Soc., 124:1697.

    Article  CAS  Google Scholar 

  • Pinchuk, L. and Eckstein, E. C., 1981, Pressurized polymerization for reaction casting of poly (2-hydroxyethylmethacrylate), J. Biomed. Mater. Res., 15:183.

    Article  CAS  Google Scholar 

  • Shimada, K., Yano, M., Shibatani, K., Komoto, Y., Esashi, M. and Matsuo, T., 1980, Application of catheter-tip ISFET for continuous in vivo measurement, Med. Biol. Engr. & Comp., 18:741.

    Article  CAS  Google Scholar 

  • Wisniewski, S. J., Gregonis, P. E., Kim, S. W. and Andrade, J. D., 1976, Diffusion through hydrogel membranes. I. Permeation of water through poly(2-hydroxyethylmethacrylate) and related polymers, in:“Hydrogels for Medical and Related Applications,” Andrade, J. D., ed., Am. Chem. Soc., Wash. D. C.

    Google Scholar 

  • Wisniewski, S. J. and Kim, S. W., 1980, Permeation of water through poly(2-hydroxyethylmethacrylate) and related polymers: Temperature effects, J. Mem. Sci., 6:309.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Margules, G.S., Kane, J.A., Livingston, A.R., MacGregor, D.C. (1984). Potassium Ion Transport through Hydrogel Membranes in the Presence of Blood Components: Plasma Proteins. In: Shalaby, S.W., Hoffman, A.S., Ratner, B.D., Horbett, T.A. (eds) Polymers as Biomaterials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2433-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2433-1_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9480-1

  • Online ISBN: 978-1-4613-2433-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics