Chemical Aspects of 237Np Mössbauer Spectroscopy

  • D. G. Karraker


The 237Np Mössbauer effect has been especially useful in studies of neptunium chemistry, by virtue of its excellent resolution and straightforward experimental techniques. Neptunium can have valences from +3 to +7, and a broad range of compounds can be prepared that are analogous to those of other actinide elements. Studies on neptunium compounds, for example, have a ready application to the analogous compounds of uranium and plutonium. The emphasis in this paper will be on the application of the 237Np Mössbauer effect to problems in neptunium chemistry.


Isomer Shift Organometallic Compound Argonne National Laboratory Mossbauer Spectrum Magnetic Splitting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. A. Stone and W. L. Pillinger, Phys. Rev. Lett.13:200 (1964).CrossRefGoogle Scholar
  2. 2.
    B. D. Dunlap, M. B. Brodsky, G. M. Kalvius, G. K. Shenoy, and D. J. Lam. J. Appl. Phys.40: 1495 (1969).CrossRefGoogle Scholar
  3. 3.
    W. L. Pillinger and J. A. Stone. “Mössbauer Effect Methodology.” I. J. Gruverman, Ed., Plenum Press, New York, Vol. 4, pp. 217–236 (1968).Google Scholar
  4. 4.
    G. M. Kalvius . “Plutonium 1970 and Other Actinides.” Proceedings of the 4th International Conference on Plutonium and Other Actinides, Santa Fe, NM., October 5–9, 1970. W. N. Miner, Ed., Metallurgical Society of American Institute of Mining, Metallurgical and Petroleum Engineers, Inc., New York, NY, pp. 296–330 (1970).Google Scholar
  5. 5.
    B. D. Dunlap and G. M. Kalvius. In “Actinides Electronic Structure and Related Properties.” A. J. Freeman, and J. B. Darby, Jr., Eds., Academic Press, New York, NY, p. 237 (1974).Google Scholar
  6. 6.
    B. D. Dunlap, G. M. Kalvius, S. L. Ruby, M. B. Brodsky, and D. Cohen, Phys. Rev.171: 316 (1968).CrossRefGoogle Scholar
  7. 7.
    N. N. Krot and A. D. Gelman. “Dokl. Akad. Naak USSR,” 177:124, ANL-trans-574, Argonne National Laboratory, Argonne, IL (1968).Google Scholar
  8. 8.
    N. M. Krot, M. P. Mefodyeva, T. V. Smirnova, and A. D. Gelman, “Radiokhimiya,” 10:412. ANL-trans-678, Argonne National Laboratory, Argonne, IL (1968).Google Scholar
  9. 9.
    J. A. Stone, W. L. Pillinger, and D. G. Karraker. Inorg. Chem.8:2519 (1969).CrossRefGoogle Scholar
  10. 10.
    K. Frohlich, P. Gutlich, and C. Keller. J. Chem. Soc.. Dalton Trans 971 (1972)Google Scholar
  11. 11.
    K. W. Bagnall and J. B. Laidler. J. Chem. Soc. (A) 516 (1966).Google Scholar
  12. 12.
    D. G. Karraker and J. A. Stone. J. Inorg. Nucl. Chem. 41:1153 (1979).CrossRefGoogle Scholar
  13. 13.
    D. G. Karraker and J. A. Stone. J. Inorg. Nucl. Chem. 39:2215 (1977).CrossRefGoogle Scholar
  14. 14.
    J. C. Sullivan. J. Am. Chem. Soc.84: 4256 (1962).CrossRefGoogle Scholar
  15. 15.
    J. C. Sullivan . Inorg. Chem.3:315 (1964).CrossRefGoogle Scholar
  16. 16.
    R.K. Murmann and J. C. Sullivan. Inorg. Chem.6:892 (1967).CrossRefGoogle Scholar
  17. 17.
    D.G. Karraker and J. A. Stone. Inorg. Chem.16: 2979 (1977).CrossRefGoogle Scholar
  18. 18.
    K. R. Lea, M. J. M. Leask, and W. P. Wolfe. J. Chem. Phys. Solids25: 1381 (1962).CrossRefGoogle Scholar
  19. 19.
    B. Bleaney . Proc. Roy. Soc.(London) 73:939 (1959).CrossRefGoogle Scholar
  20. 20.
    J. B. Gruber and E. R. Menzel. J. Chem. Phys.50:3773 (1964).Google Scholar
  21. 21.
    E. R. Menzel, J. B. Gruber, and J. L. Ryan. J. Chem. Phys.57:4387 (1972).CrossRefGoogle Scholar
  22. 22.
    E. R. Menzel and J. B. Gruber. J. Chem. Phys.54: 3857 (1971).CrossRefGoogle Scholar
  23. 23.
    R. P. Richardson and J. B. Gruber. J. Chem. Phys.56: 256 (1972).CrossRefGoogle Scholar
  24. 24.
    J. E. Bray. Phys. Rev. B, 18: 2973 (1978).CrossRefGoogle Scholar
  25. 25.
    N. Edelstein, W. Kolbe, and J. E. Bray. Phys. Rev. B, 21: 338 (1980).CrossRefGoogle Scholar
  26. 26.
    D. G. Karraker and J. A. Stone. Phys. Rev. B, 22: 111 (1980).CrossRefGoogle Scholar
  27. 27.
    D. G. Karraker and J. A. Stone. Inorg. Chem.11: 1742 (1972).CrossRefGoogle Scholar
  28. 28.
    D. G. Karraker and J. A. Stone. Inorg. Chem.18: 2205 (1979).CrossRefGoogle Scholar
  29. 29.
    D. G. KarrakerInorg. Chem.22:503 (1983).CrossRefGoogle Scholar
  30. 30.
    D. G. Karraker . In “Organometallics of the f-Elements” T. J. Marks and R. D. Fischer, Eds., D. Reidel: Dordrecht, Holland, p. 395 (1979).Google Scholar
  31. 31.
    D. G. Karraker . In “Recent Chemical Applications of the Mossbauer Effect.” G. Shenoy, J. G. Stevens, Eds., American Chemical Society: Washington, DC, Adv. Chem. Ser. 194:347 (1981).Google Scholar
  32. 32.
    B. D. Dunlap, D. J. Lam, G. M. Kalvius, and G. K. Shenoy. J. Appl. Phys.42:1719 (1971).CrossRefGoogle Scholar
  33. 33.
    J. Gal, Z. Hadari, E. R. Bauminger, I. Nowik and S. Ofer. Solid State Communication, 15: 1805 (1974).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • D. G. Karraker
    • 1
  1. 1.Savannah River LaboratoryE. I. du Pont de Nemours & Co.AikenUSA

Personalised recommendations