Skip to main content

Physiological Aspects of Varietal Improvement

  • Chapter

Part of the book series: Stadler Genetics Symposia Series ((SGSS))

Abstract

Increased crop production derives from both agronomic and varietal improvement, and from their continuing interactions. For example, cheaper nitrogen fertilizers created a need for shorter cereals less prone to lodging but more dependent on herbicidal control of weeds. In turn the denser crops possible with greater fertilizer use open up new opportunities and criteria for selection, such as tolerance of closer spacing and, possibly, smaller, more upright leaves with faster photosynthesis per unit area. Varietal improvement, therefore, both creates and responds to agronomic change.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan, R. E., Vogel, O. A., and Craddock, J. C., 1959, Comparative response to gibberellic acid of dwarf, semi-dwarf and standard short and tall winter varieties, Agron. J, 51: 737.

    CAS  Google Scholar 

  • Allison, M. J., Cowe, I., and McHale, R., 1976, A rapid test for the prediction of malting quality in barley, J. Inst. Brewing, 82: 166.

    CAS  Google Scholar 

  • Austin, R. B., Bingham, J., Blackwell, R. D., Evans, L. T., Ford, M. A., Morgan, C. L., and Taylor, M., 1980a, Genetic improvements in winter wheat yields since 1900 and associated physiological changes, J. Agric. Sci., 94: 675.

    Google Scholar 

  • Austin, R. B., Morgan, C. L., Ford, M. A., and Blackwell, R. D., 1980b, Contributions to grain yield from pre-anthesis assimilation in tall and dwarf barley phenotypes in two contrasting seasons, Ann. Bot., 45: 309.

    Google Scholar 

  • Austin, R. B., Morgan, C. L., Ford, M. A., and Bhagwat, S. G., 1982, Flag leaf photosynthesis of Triticum aestivum and related diploid and tetraploid species, Ann. Bot., 49: 177.

    Google Scholar 

  • Bhagsari, A. S., and Brown, R. H., 1976, Photosynthesis in peanut Arachis genotypes, Peanut Science, 3: 1.

    CAS  Google Scholar 

  • Boyer, J. S., 1982, Plant productivity and environment, Science, 218: 443.

    PubMed  CAS  Google Scholar 

  • Bremner, P. M., and Davidson, J. L., 1978, A study of grain number in two contrasting wheat cultivars, Aust. J. Agric. Res., 29: 431.

    Google Scholar 

  • Brooking, I. R., and Kirby, E. J. M., 1981, Interrelationships between stem and ear development in winter wheat: the effects of a Norin 10 dwarfing gene, Gai/Rht2, J. Agric. Sci. Cambr., 97: 373.

    Google Scholar 

  • Bull, T. A., 1971, The C4 pathway related to growth rates in sugar cane, in: “Photosynthesis and Photorespiration,” M. D. Hatch, C. B. Osmond and R. O. Slatyer, eds., Wiley, New York. pp. 68–75.

    Google Scholar 

  • Buttery, B. R., Buzzell, R. I., and Findlay, W. I., 1981, Relationships between photosynthetic rate, bean yield and other characters in field grown cultivars of soybean, Can. J. Plant Sci., 61: 191.

    Google Scholar 

  • Cardwell, V. B., 1982, Fifty years of Minnesota corn production: sources of yield increases, Agron. J., 74: 984.

    Google Scholar 

  • Christiansen, M. N., and Lewis, C. F., eds, 1982, “Breeding Plants for Less Favorable Environments,” Wiley, New York.

    Google Scholar 

  • Cock, J. H., and Yoshida, S., 1973, Changing sink and source relations in rice Oryza sativa L. using carbon dioxide enrichment in the field, Soil Sci. Plant Nutr., 19: 229.

    CAS  Google Scholar 

  • Cohen, C. J., Chilcote, D. O., and Frakes, R. V., 1982, Gas exchange and leaf area characteristics of four tall fescue selections differing in forage yield, Crop Sci., 22: 709.

    Google Scholar 

  • Cook, M. G., and Evans, L. T., 1983, Some physiological aspects of the domestication and improvement of rice Oryza spp, Field Crops Res., 6: 219.

    Google Scholar 

  • Crosbie, T. M., and Mock, J. J., 1981, Changes in physiological traits associated with grain yield improvement in three maize breeding programs, Crop Sci., 21: 255.

    Google Scholar 

  • Crosbie, T. M., and Pearce, R. B., 1982, Effects of recurrent phenotypic selection for high and low photosynthesis on agronomic traits in two maize populations, Crop Sci., 22: 809.

    Google Scholar 

  • Dobben, W. H. van, 1962, Influence of temperature and light conditions on dry matter distribution, development rate, and yield in arable crops, Neth. J. Agric. Sci., 10: 377.

    Google Scholar 

  • Donald, C. M., 1981, Competitive plants, communal plants, and yield in wheat crops, in: “Wheat Science-Today and Tomorrow,” Evans, L. T., Peacock, W. J., eds., Cambridge Univ. Press, Cambridge. pp. 223–247.

    Google Scholar 

  • Dougherty, C. T., Rooney, K. R., Scott, W. R., and Langer, R. H. M., 1975, Levels of water soluble carbohydrate in the preanthesis ear of wheat, and grain set per spikelet, N. Z. J. Agric. Res., 18: 351.

    Google Scholar 

  • Downes, R. W., 1971, Relationship between evolutionary adaptation and gas exchange characteristics of diverse sorghum taxa, Aust. J. Biol. Sci., 24: 843.

    Google Scholar 

  • Duncan, W. G., and Hesketh, J. D., 1968, Net photosynthetic rates, relative leaf growth rates, and leaf numbers of 22 races of maize grown at eight temperatures, Crop Sci., 8: 670.

    Google Scholar 

  • Dunstone, R. L., Gifford, R. M., and Evans, L. T., 1973, Photosynthetic characteristics of modern and primitive wheat species in relation to ontogeny and adaptation to light, Aust. J. Biol. Sci., 26: 295.

    Google Scholar 

  • Duvick, D. N., 1977, Genetic rates of gain in hybrid maize yields during the past 40 years, Maydica, 22: 187.

    Google Scholar 

  • Duvick, D. N., 1977, Genetic rates of gain in hybrid maize yields during the past 40 years, Maydica, 22: 187.

    Google Scholar 

  • El-Sharkawy, M., Hesketh, J. D., and Muramoto, H., 1965, Leaf photosynthetic rates and other growth characteristics among 26 species of Gossypium, Crop Sci., 5: 173.

    CAS  Google Scholar 

  • Evans, J. R., 1983, Nitrogen and photosynthesis in the flag feaf of wheat Tritieum aestivum L., Plant Physiol., 72: 297.

    PubMed  CAS  Google Scholar 

  • Evans, J. R., 1983, Nitrogen and photosynthesis in the flag feaf of wheat Triticum aestivum L., Plant Physiol., 72: 297.

    PubMed  CAS  Google Scholar 

  • Evans, J. R., and Seemann, J. R., 1984, Differences between wheat genotypes in specific activity of RUBP carboxylase and the relationship to photosynthesis, Plant Physiol., in press.

    Google Scholar 

  • Evans, L. T., 1978, The influence of irradiance before and after anthesis on grain yield and its components in microcrops of wheat grown in a constant daylength and temperature regime, Field Crops Res., 1: 5.

    Google Scholar 

  • Evans, L. T., 1981, Yield improvement in Wheat: empirical or analytical?, in: “Wheat Science - Today and Tomorrow,” Evans, L. T. and Peacock, W. J. eds., Cambridge Univ. Press, Cambridge. pp. 203–222.

    Google Scholar 

  • Evans, L. T., Bingham, J., Jackson, P., and Sutherland, J., 1972, Effect of awns and drought on the supply of photosynthate and its distribution within wheat ears, Ann. Appl. Biol., 70: 67.

    Google Scholar 

  • Evans, L. T., and De Datta, S. K., 1979, The relation between irradiance and grain yield of irrigated rice in the tropics, as influenced by cultivar, nitrogen fertilizer application and month of planting, Field Crops Res., 2: 1.

    Google Scholar 

  • Evans, L. T., and Dunstone, R. L., 1970, Some physiological aspects of evolution in wheat, Aust. J. Biol. Sci., 23: 725.

    Google Scholar 

  • Evans, L. T., Visperas, R. M., and Vergara, B. S., 1984, Morphological and physiological changes among rice varieties used in the Philippines over the last seventy years, Field Crops Res., 8: 105–124.

    Google Scholar 

  • Ferguson, H., 1974, Use of variety isogenes in plant water use-efficiency studies, Agric Meteorol., 14: 25.

    Google Scholar 

  • Fischer, R. A., and Aguilar, I., 1976, Yield potential in a dwarf spring wheat and the effect of carbon dioxide fertilization, Agron. J., 68: 749.

    Google Scholar 

  • Flintham, J. E., and Gale, M. D., 1983, The ‘Tom Thumb’ dwarfing gene, Rht 3, in wheat. 2. Effects on height, yield and grain quality, Theo. and Appl. Genet., 65: in press.

    Google Scholar 

  • Ford, D. M., Shibles, R., and Green, D. E., 1983, Growth and yield of soybean lines selected for divergent photosynthetic ability, Crop Sci., 23: 517.

    Google Scholar 

  • Frey, K. J., 1981, Capabilities and limitations of conventional plant breeding, in: “Genetic Engineering for Crop Improvement,” Rachie, K. O., and Lyman, L. M., eds., Rockefeller Foundation, New York. pp. 15–62.

    Google Scholar 

  • Gale, M. D., 1983, The role and potential of dwarfing genes in wheat, in: “New Genetical Approaches to Crop Improvement,” Siddiqui, D. A., ed., in press.

    Google Scholar 

  • Gale, M. D., Edrich, J., and Lupton, F. G. H., 1974, Photosynthetic rates and the effects of applied gibberellin in some dwarf, semi-dwarf and tall wheat varieties Triticum aestivum, J. Agric. Sci. Cambr., 83: 43.

    Google Scholar 

  • Gale, M. D., and Flintham, J. E., 1983, The effect of the Tom Thumb dwarfing gene on grain size and grain number in wheat Triticum aestivum, Intl. Atomic Energy Agency, Vienna, in press.

    Google Scholar 

  • Gale, M. D., and Marshall, G. S., 1973, Insensitivity to gibberellin in dwarf wheats,Ann. Bot., 37: 729.

    CAS  Google Scholar 

  • Gale, M. D., and Marshall, G. A., 1979, A classification of the Norin 10 and Tom Thumb dwarfing genes in hexaploid bread wheat, Proc. 5th Intl. Wheat Genetics Symp., 2: 995.

    Google Scholar 

  • Gifford, R. M., 1974, A comparison of potential photosynthesis, productivity and yield of plant species with differing photosynthetic metabolism, Aust. J. Plant Physiol., 1: 107.

    CAS  Google Scholar 

  • Hardman, L. L., and Brun, W. A., 1971, Effect of atmospheric carbon dioxide enrichment at different developmental stages on growth and yield components of soybeans, Crop Sci., 11: 886.

    Google Scholar 

  • Hart, R. H., Pearce, R. B., Chatterton, N. J., Carlson, G. E., Barnes, D. K., and Hanson, C. H., 1978, Alfalfa yield, specific leaf weight, CO2 exchange rate and morphology,Crop Sci., 18: 649.

    Google Scholar 

  • Hesketh, J. D., Ogren, W. L., Hageman, M. E., and Peters, D. B., 1981, Correlations among leaf CO2-exchange rates, areas and enzyme activities among soybean cultivars,Photosynth. Res., 2: 21.

    CAS  Google Scholar 

  • Hofner, W., and Kuhn, H., 1982, Effect of growth regulator combinations on ear development, assimilate translocation and yield in cereal crops, in: “Chemical manipulation of Crop Growth and Development, Assimilate Translocation and Yield and Creal Crops,” McLaren, J. S., ed., Butterworths, London. pp. 375–390.

    Google Scholar 

  • Hunt, L. A., 1979, Stem weight changes during grain filling in wheat from diverse sources, Proc. 5th Intl. Wheat Genetics Symp., 2: 923.

    Google Scholar 

  • Hymowitz, T., 1983, Variation in and genetics of certain antinutritional and biologically active components of soybean seed, in: “Better Crops for Feed,” Ciba/Pitmans, London.

    Google Scholar 

  • Jensen, N. F., 1978, Limits to growth in world food production, Science, 201: 317.

    PubMed  CAS  Google Scholar 

  • Jong, S. K., Brewbaker, J. L., and Lee, C. H., 1982, Effects of solar radiation on the performance of maize in 41 successive monthly plantings in Hawaii, Crop Sci., 22: 13.

    Google Scholar 

  • Joppa, L. R., 1973, Agronomic characteristics of near-isogenic tall and semi-dwarf lines of Durum wheat, Crop Sci., 13: 743.

    Google Scholar 

  • Kaplan, S. L., and Koller, H. R., 1977, Leaf area and CO2 exchange rate as determinants of the rate of vegetative growth in soybean plants, Crop Sci., 17: 35.

    Google Scholar 

  • Khan, M. A., and Tsunoda, S., 1970a, Evolutionary trends in leaf photosynthesis and related leaf characters among cultivated wheat species and its wild relatives,Jap. J. Breed., 20: 133.

    Google Scholar 

  • Khan, M. A., and Tsunoda, S., 1970b, Growth analysis of cultivated wheat species and their wild relatives with special reference to dry matter distribution among different plant organs and to leaf area expansion, Tohoku J. Agric. Res., 21: 47.

    Google Scholar 

  • King, R. W., and Chadim, H., 1983, Ear wetting and pre-harvest sprouting of wheat, in: “Third Intl. Sympos. on Pre-Harvest Sprouting in Cereals,” Kruger, J. E. and La Berge, D. E., eds., Westview, Colorado. pp. 36–42.

    Google Scholar 

  • King, R. W., Gale, M. D., and Quarrie, S. A., 1983, Effects of Norin-10 and Tom Thumb dwarfing genes on morphology, physiology and abscisic acid production in wheat, Ann. Bot., 51: 201.

    CAS  Google Scholar 

  • Konar, A., and Asana, R. D., 1975, Effect of plant competition on growth and yield of tall and semi-dwarf varieties of wheat, Indian J. Agric. Sci., 45: 93.

    Google Scholar 

  • Konzak, C. F., 1982, Evaluation and genetic analysis of semi-dwarf mutants in wheat,in: “Semi-dwarf cereal mutants and their use in cross-breeding,” Intl. Atomic Energy Agency, Vienna. pp. 25–37.

    Google Scholar 

  • Krenzer, E. G., and Moss, D. N., 1975, Carbon dioxide enrichment effects upon yield and yield components in wheat, Crop Sci., 15: 71.

    CAS  Google Scholar 

  • Kulshrestha, V. P., and Jain, H. K., 1982, Eighty years of wheat breeding in India: past selection pressures and future prospects, Z. Pflanzensücht., 89: 19.

    Google Scholar 

  • Landivar, J. A., Baker, D. N., and Jenkins, J. N., 1983a, Application of GOSSYM to genetic feasibility studies. I. Analyses of fruit abscission and yield in Okra-leaf cottons, Crop Sci., 23: 497.

    Google Scholar 

  • Landivar, J. A., Baker, D. n., and Jenkins, J. N., 1983b, Application of GOSSYM to genetic feasibility studies. II. Analyses of increasing photosynthesis, specific leaf weight and longevity of leaves in cotton, Crop Sci., 23: 504.

    Google Scholar 

  • Lavergne, D., Bismuth, E., Sarda, C., and Champigny, M. L., 1979, Physiological studies on two cultivars of Pennisetum: P. americanum, 23DB a cultivated species, and P. mollissimum, a wild species. I. Effects, of leaf age on biochemical characteristics and activities of the enzymes associated with the photosynthetic carbon metabolism, Zeitschr. f. Pflanzenphysiol., 93: 159.

    CAS  Google Scholar 

  • Lupton, F. G. H., Oliver, R. H., and Ruckenbauer, P., 1974, An analysis of the factors determining yields in crosses between semi-dwarf and taller wheat varieties, J. Agric. Sci. Cambr., 82: 483.

    Google Scholar 

  • Lush, W. M., and Evans, L. T., 1981, The domestication and improvement of cowpeas Vigna unguiculata L. Walp., Euphytica, 30: 579.

    Google Scholar 

  • Lush, W. M., and Rawson, H. M., 1979, Effects of domestication and region of origin on leaf gas exchange in cowpea Vigna unguiculata L. Walp., Photosynthetica, 13: 419.

    Google Scholar 

  • MacKey, J., 1949, Genetic potentials for improved yield, in: “Proc. Workshop on Agricultural Potentiality Directed by Nutritional Needs,” Rajki, S. ed., Akad. Kiado, Budapest. pp. 121–143.

    Google Scholar 

  • McNeal, F. H., Smith, E. P., and Berg, M. A., 1974, Plant height, grain yield, and yield component relationships in spring wheat, Agron. J., 66: 575.

    Google Scholar 

  • Mahon, J. D., 1982, Field evaluation of growth and nitrogen fixation in peas selected for high and low photosynthetic CO2 exchange, Can. J. Plant Sci., 62: 5.

    Google Scholar 

  • Makunga, O. H. D., Pearman, I., Thomas, S. M., and Thorne, G. N., 1978, Distribution of photosynthate produced before and after anthesis in tall and semi-dwarf winter wheat, as affected by nitrogen fertilizer, Ann. Appl. Biol., 88: 429.

    CAS  Google Scholar 

  • Marshall, H. G., 1982, Breeding for tolerance to heat and cold,in: “Breeding Plants for Less Favorable Environments,” Christiansen, M. N., Lewis, C. F., eds., Wiley, New York. pp. 47–70.

    Google Scholar 

  • Michael, G., and Seiler-Kelbitsch, H., 1972, Cytokinin content and kernel size of barley grain as affected by environmental and genetic factors, Crop Sci., 12: 162.

    Google Scholar 

  • Morgan, J., 1983, Osmo-regulation as a selection criterion for drought tolerance in wheat, Aust. J. Agric. Sci., 34: 607.

    Google Scholar 

  • Moss, D. N., and Musgrave, R. B., 1971, Photosynthesis and crop production, Adv. Agron., 23: 317.

    Google Scholar 

  • Mussell, H., and Staples, R. C., eds., 1979, “Stress Physiology in Crop Plants,” Wiley, New York.

    Google Scholar 

  • Nelson, C. J., Asay, K. H., and Horst, G. L., 1975, Relationship of leaf photosynthesis to forage yield of tall fescue, Crop Sci., 15: 476.

    Google Scholar 

  • Olugbemi, L. B., Austin, R. B., and Bingham, J., 1976, Effects of awns on the photosynthesis of wheat, Triticum aestivum, Ann. Appl. Biol., 84: 241.

    Google Scholar 

  • Oritani, R., Enbutsu, T., and Yoshida, R., 1979, Studies on the nitrogen metabolism in crop plants. XVI. Changes in photosynthesis and nitrogen metabolism in relation to leaf area growth of several rice varieties, Japan J. Crop Sci., 48: 10.

    CAS  Google Scholar 

  • Paleg, L. G., and Aspinall, D., 1981, “Physiology and Biochemistry of Drought Resistance in Plants,” Acad. Press, Melbourne.

    Google Scholar 

  • Passioura, J. B., 1981, The interaction between the physiology and the breeding of wheat,in: “Wheat Science - Today and Tomorrow,” Evans, L. T., and Peacock, W. J., eds., Cambridge Univ. Press, Cambridge. pp. 191–201.

    Google Scholar 

  • Patterson, F. L., Compton, L. E., Caldwell, R. M., and Schafer, J. F., 1962, Effect of awns on yield, test weight, and kernel weight of soft red winter wheats, Crop Sci., 2: 199.

    Google Scholar 

  • Patterson, F. L., and Ohm, H. W., 1975, Compensating ability of awns in soft red winter wheat, Crop Sci., 15: 403.

    Google Scholar 

  • Payne, P. I., Corfield, K. G. and Blackman, J. A., 1979, Identification of a high-molecular weight sumunit of glutenin whose presence correlates with bread-making quality in wheats of related pedigree, Theo. and Appl. Genet., 55: 153.

    CAS  Google Scholar 

  • Pearman, I., Thomas, S. M., and Thorne, G. N., 1978, Effect of nitrogen fertilizer on growth and yield of semi-dwarf and tall varieties of winter wheat, J. Agric. Sci., 91: 31.

    Google Scholar 

  • Peet, M. M., Bravo, A., Wallace, D. H., and Ozbun, J. L., 1977, Photosynthesis, stomatal resistance, and enzyme activities in relation to yield of field grown dry bean varieties, Crop Sci., 17: 287.

    CAS  Google Scholar 

  • Planchon, C., and Fesquet, J., 1982, Effect of the D genome and of selection on photosynthesis in wheat, Theo. and Appl. Genet., 61: 359.

    Google Scholar 

  • Pugsley, A. T., 1963, The inheritance of a vernalization response in Australian spring wheats, Aust. J. Agric. Sci., 14: 622.

    Google Scholar 

  • Pugsley, A. T., 1965, Inheritance of a correlated daylength response in spring wheat, Nature, 207: 108.

    Google Scholar 

  • Pugsley, A. T., 1983, The impact of plant physiology on Australian wheat breeding, Euphytica, 32: 743–748.

    Google Scholar 

  • Qualset, C. O., 1979, Mendelian genetics of quantitative characters with reference to adaptation and breeding in wheat, Proc. 5th Intl. Wheat Genetics Symp., 2: 577.

    Google Scholar 

  • Quarrie, S. A., 1983, Genetic differences in abscisic acid physiology and their potential uses in agriculture, in: “Abscisic Acid,” Addicott, F. T., ed., Praeger, New York. pp. 365–419.

    Google Scholar 

  • Quisenberry, J. E., 1982, Breeding for drought resistance and plant water use efficiency, in: “Breeding Plants for Less Favorable Environments,” Christiansen, M. N., Lewis, C. F., eds., Wiley, New York. pp. 193–212.

    Google Scholar 

  • Radley, M., 1970, Comparison of endogenous gibberellins and response to applied gibberellin of some dwarf and tall wheat cultivars, Planta (Berl.), 92: 292.

    CAS  Google Scholar 

  • Radley, M., 1980, Effect of abscisic acid and gibberellic acid on grain set in wheat, Ann. Appl. Biol., 95: 409.

    CAS  Google Scholar 

  • Raper, C. D., and Kramer, P. J., eds., 1983, “Crop Reactions to Water and Temperature Stresses in Humid, Temperate Climates,” Westview, Colorado.

    Google Scholar 

  • Rasmusson, D. C., and Crookston, R. K., 1977, Role of multiple awns in determining barley yields, Crop Sci., 17: 135.

    Google Scholar 

  • Rawson, H. M., and Evans L. T., 1971, The contribution of stem reserves to grain development in a range of wheat cultivars of different height, Aust. J. Agric. Res., 22: 851.

    Google Scholar 

  • Richards, R. A., and Passioura, J. B., 1981, Seminal root morphology and water use of wheat. II. Genetic variation, Crop Sci., 21: 253.

    Google Scholar 

  • Russell, W. A., 1974, Comparative performance for maize hybrids representing different eras of maize breeding. Proc. 29th Ann. Corn and Sorghum Res. Conf., 81.

    Google Scholar 

  • Scharen, A. L., Krupinsky, J. M., and Reid, D. A., 1983, Photosynthesis and yield of awned versus awnless isogenic lines of winter barley, Can. J. Plant Sci., 63: 349.

    Google Scholar 

  • Silvey, V., 1978, The contribution of new varieties to increasing cereal yield in England and Wales, J. Natl. Inst. Agric. Bot., 14: 367.

    Google Scholar 

  • Singh, B. D., Singh, R. B., Singh, R. M., Singh, Y., and Singh, R. P., 1978, GA3 of some wheat strains, Proc. 5th Intl. Wheat Genetics Symp. 1, 510–513.

    Google Scholar 

  • Sofield, I., Wardlaw, I. F., Evans, L. T., and Zee, S. Y., 1977, Nitrogen, phosphorus and water contents during grain development and maturation in wheat, Aust. J. Plant Physiol., 4: 799.

    CAS  Google Scholar 

  • Thorne, G. N., 1982, Distribution between parts of the main shoot and the tillers of photosynthate produced before and after anthesis in the top three leaves of main shoots of Hobbit and Maris Huntsman winter wheat, Ann. Appl. Biol., 10: 553.

    Google Scholar 

  • Turner, N. C., and Kramer, P. J., eds., 1980, “Adaptation of Plants to Water and High Temperature Stress,” Wiley, New York.

    Google Scholar 

  • Vogel, O. A., Allan, R. E., and Peterson, C. T., 1963, Plant and performance characteristics of semi-dwarf winter wheats producing most efficiently in Eastern Washington, Agron. J., 55: 397.

    Google Scholar 

  • Wattal, P. N., and Asana, R. D., 1976, Physiological analysis of the yield of tall, semi-dwarf and dwarf cultivars of wheat Triticum aestivum L., Indian J. Plant Physiol. 19: 184.

    Google Scholar 

  • Wojcieska, U., and Slusarczyk, M., 1975, The distribution of the products of photosynthesis in the stems of long and short strawed winter wheats, Acta Agrobotanica, 28: 263.

    Google Scholar 

  • Yeoh, H-H., Badger, M. R., and Watson, L., 1981, Variations in kinetic properites of ribulose-1,5-bisphosphate carboxylase among plants, Plant Physiol., 67: 1151.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Evans, L.T. (1984). Physiological Aspects of Varietal Improvement. In: Gustafson, J.P. (eds) Gene Manipulation in Plant Improvement. Stadler Genetics Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2429-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2429-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9478-8

  • Online ISBN: 978-1-4613-2429-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics