Chlamydomonas Reinhardii, A Potential Model System for Chloroplast Gene Manipulation

Choloroplast DNA/Chlamydomonas reinhardii/transformation/vectors
  • J. D. Rochaix
  • J. Erickson
  • M. Goldschmidt-Clermont
  • M. Schneider
  • J. M. Vallet
Part of the Stadler Genetics Symposia Series book series (SGSS)


Studies on the structure, function and regulation of genes coding for chloroplast proteins are important for understanding the biosynthesis of the photosynthetic apparatus and the integration of chloroplasts within plant cells. Chlamydomonas reinhardii is particularly well suited for solving these problems because this green unicellular alga can be manipulated with ease both at the biochemical and genetic level. Several genes have been identified on the physical map of the chloroplast genome. They include genes coding for ribosomal RNA, tRNA and several proteins including the large subunit of ribulose 1,5 bisphosphate carboxylase (RubisCo) and several thylakoid polypeptides. The nuclear gene for the small subunit of RubisCo has also been cloned. Because chloroplast DNA recombination occurs in C. reinhardii, a rare property among plants, chloroplast genes can be analyzed by genetic means. Numerous chloroplast photosynthetic mutations have been isolated and several of them have been shown to be part of a single linkage group (Gillham, 1978). We have reached the stage where the genetic and biochemical approaches can be coupled efficiently in C. reinhardii; in particular, it has been possible to correlate the physical and genetic chloroplast DNA maps at a few sites.

A nuclear transformation system has been developed for C. reinhardii by using a cell wall deficient arginine auxotroph which can be complemented with a plasmid containing the yeast ARG4 locus. Transformation vectors have been constructed by inserting random nuclear and chloroplast DNA fragments into a plasmid containing the yeast ARG4 locus and by testing the recombinant plasmids for their ability to promote autonomous replication in yeast (ARS sites) and C. reinhardii (ARC sites). Several plasmids have been recovered that act as shuttle vectors between E. coli, C. reinhardii and yeast. Four ARS sites and four ARC sites have been mapped on the chloroplast genome of C. reinhardii. One plasmid replicates both in C. reinhardii and yeast. Because C. reinhardii cells contain a single large chloroplast they offer interesting possibilities for attempts of chloroplast transformation by microinjection. Since appropriate selective markers and transformation vectors are available, this approach can now be explored.


Chloroplast Genome Chloroplast Gene Bisphosphate Carboxylase Chloroplast Transformation Uniparental Inheritance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Beck, E., Ludwing, C., Auerswald, E. A., Reiss, B., and Schaller, H., 1982, Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5, Gene, 19:329–356.CrossRefGoogle Scholar
  2. Behn, W., and Herrmann, R. G., 1977, Circular molecules in the β satellite DNA of Chlamydomonas reinhardii, Molec. Gen. Genet., 157:25–30.CrossRefGoogle Scholar
  3. Blanc, H., and Dujon, B., 1981, in:“Mitochondrial Genes,” P. Slonimski et al., eds., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 279–294.Google Scholar
  4. Bolivar, F., Rodriguez, R. L., Greene, P. J., Betlach, M. C., Heynecker, H. L., Boyer, H. W., Crosa, J. H., and Falkow, S., 1977, Construction and characterization of new cloning vehicles, Gene, 2:95–113.PubMedCrossRefGoogle Scholar
  5. Broach, J. R., Li, Y. Y., Feldman, J., Jayaram, M., Abraham, J., Nasmyth, K. A., and Hicks, J. B., 1982, Localization and sequence analysis of yeast origins of DNA replication, Cold Spring Harbor, Symp. Quant. Biol., 47:1165–1173.Google Scholar
  6. Chua, N. H., and Schmidt, G. Y., 1979, Transport of proteins into mitochondria and chloroplasts, J. Cell Biol., 81:461–483.PubMedCrossRefGoogle Scholar
  7. Clarke, L., and Carbon, J., 1978, Functional expression of cloned yeast DNA in Escherichia coli: specific complementation of Argininosuccinate Lyase (arg4) mutations, J. Mol. Biol., 120:517–532.PubMedCrossRefGoogle Scholar
  8. Davies, D. R., and Plaskitt, A., 1971, Genetical and structural analyses of cell-wall formation in Chlamydomonas reinhardii, Genet. Res., 17:33–43.CrossRefGoogle Scholar
  9. Dron, M., Rahire, M., and Rochaix, J. D., 1982, Sequence of the chloroplast DNA region of Chlamydomonas reinhardii containing the gene of the large subunit of ribulose bisphosphate carboxylase and parts of its flanking genes, J. Mol. Biol., 161:775–793.CrossRefGoogle Scholar
  10. Dron, M. Rahire, M. Rochaix, J. D., and Mets, L., 1983, First DNA sequence of a chloroplast mutation: a missense alteration in the ribulosebisphosphate carboxylase large subunit gene, Plasmid, 9:321–324.PubMedCrossRefGoogle Scholar
  11. Erickson, J. M., Shneider, M., Vallet, J. M., Dron, M., Bennoun, P., and Rochaix, J. D., 1983, Chloroplast gene function: combined genetic and molecular approach in Chlamydomonas reinhardii, in: “Proceedings of 6th Intl. Congress on Photosynthesis,” Sytresma, C. ed., M. Nijhoff and W. Junk Publ., in press.Google Scholar
  12. Galloway, R. E., and Mets, L., 1982, Non-mendelian inheritance of 3- (3, 4 -dichlorophenyl) -1, 1-dimethyl urea-resistant thylakoid membrane properites in Chlamydomonas, Plant Physiol., 70:1673–1677.PubMedCrossRefGoogle Scholar
  13. Gillham, N. W., 1978, “Organelle heredity,” Raven Press, New York.Google Scholar
  14. Goldschmidt-Clermont, M., 1983, Regulation of ribulose bisphosphate carboxylase gene expression in Chlamydomonas reinhardii, in:“Proceedings of 6th Intl. Congress on Photosynthesis,” Sybesma, C. ed., M. Nijhoff and W. Junk Publ., In press.Google Scholar
  15. Goursot, R., Goze, A., Niaudet, B., and Ehrlich, S. D., 1982, Plasmids from staphylococcus aureus replicate in yeast Saccharomyces cerevisiae, Nature, 298:488–490.PubMedCrossRefGoogle Scholar
  16. Grant, D. M., Gillham, N. W., and Boynton, J. E., 1980, Inheritance of chloroplast DNA in Chlamydomonas reinhardii, Proc. Nat. Acad. Sci. U.S.A., 77:6067–6071.CrossRefGoogle Scholar
  17. Hirschberg, J., and McIntosh, L., 1983, Molecular basis of herbicide resistance, Science, In press.Google Scholar
  18. Herrera-Estrella, L., Depicker, A., van Montagu, M., and Schell, J., 1983, Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector, Nature, 303:209–213.CrossRefGoogle Scholar
  19. Hyman, B. C., Cramer, J. H., and Rownd, R. H., 1982, Properties of a Saccharomyces cerevisiae mt DNA segment conferring high-frequency yeast transformation, Proc. Nat. Acad. Sci. U. S. A., 79 1578–1582.CrossRefGoogle Scholar
  20. Koller, B., and Delius, H., 1982, Origin of replication in chloroplast DNA of Euglena gracilis located close to the region of variable size, EMBO J., 1:995–998.PubMedGoogle Scholar
  21. Leaver, C. J., and Gray, M. W., 1982, Mitochondrial genome organization and expression in higher plants, Ann. Rev. Plant Physiol., 33:373–402.CrossRefGoogle Scholar
  22. Lemieux, C., Turmel, M., and Lee, R. W., 1980, Characterization of chloroplast DNA in Chlaymdomonas eugametos and C. moewusii and its inheritance in hybrid progeny, Curr. Genet., 2:139–147.CrossRefGoogle Scholar
  23. Lemieux, C., Turmel, M., and Lee, R. W., 1981, Physical evidence for recombination of chloroplast DNA in hybrid progeny of Chlamydomonas eugametos and C. moewusii, Curr. Genet., 3:97–103.CrossRefGoogle Scholar
  24. Levine, R. P., and Goodenough, U. W., 1970, The Genetics of photosynthesis and of the chloroplast in Chlamydomonas reinhardii, Ann. Rev. Genet., 4:397–408.PubMedCrossRefGoogle Scholar
  25. Loppes, R., and Matagne, R. F. C., 1972, Allelic complementation between arg-7 mutants in Chlamydomonas reinhardii, Genetica, 43:422–430.CrossRefGoogle Scholar
  26. Loppes, R., and Denis, C., 1983, Chloroplast and nuclear DNA fragments from Chlamydomonas promoting high frequency transformation of yeast, Current Genet., 7:473–480.CrossRefGoogle Scholar
  27. Malnoe, P. M., and Rochaix, J. D., 1978, Localization of 4S RNA genes on the chloroplast genome of Chlamydomonas reinhardii, Molec. Gen. Genet., 166 269–275.PubMedGoogle Scholar
  28. Malnoe, P. M., Rochaix, J. D., Chua, N. H., and Spahr, P. F., 1979, Characterization of the gene and messenger RNA of the large subunit of ribulose 1,5 biphosphate carboxylase in Chlamydomonas reinhardii, J. Mol. Biol., 133:417–434.PubMedCrossRefGoogle Scholar
  29. Matagne, R. F., and Schlosser, J. P., 1977, Purification and subunit structure of argininosuccinate lyase from Chlamydomonas reinhardii, Biochem. J., 167:71–75.PubMedGoogle Scholar
  30. Mets, L. J., 1980, Uniparental inheritance of chloroplast DNA sequences in interspecies hybrids of Chlamydomonas, Current Genet., 2:232–238.CrossRefGoogle Scholar
  31. Mets, L. J., and Geist, L. J., 1983, Linkage of a known chloroplast gene mutation to the uniparental genome of Chlamydomonas reinhardii, Genetics, 105:559–579.PubMedGoogle Scholar
  32. Miziorko, H. M., and Lorimer, G. H., 1983, Ribulose 1,5 bisphosphate carboxylase-oxygenase, Ann. Rev. Biochem., 52:507–535.PubMedCrossRefGoogle Scholar
  33. Myers, A. M., Grant, D. M., Robert, D. K., Harris, E. H., Boynton, J. E., and Gillham, N. W., 1982, Mutants of Chlamydomonas reinhardii with physical alteration in their chloroplast DNA, Plasmid, 7:131–151.CrossRefGoogle Scholar
  34. Pfister, K., Steinback, K. E., Gardner, G., and Arntzen, C. J., 1981, Photoaffinity labeling of a herbicide receptor protein in chloroplast membranes, Proc. Nat. Acad. Sci. U. S. A., 78:881–985.CrossRefGoogle Scholar
  35. Rochaix, J. D., 1978, Restriction endonuclease map of the chloroplast DNA of Chlamydomonas reinhardii, J. Mold. Biol., 126:567–617.Google Scholar
  36. Rochaix, J. D., 1981, Organization, function and expression of the chloroplast DNA of Chlamydomonas reinhardii, Experientia, 37:323–332.CrossRefGoogle Scholar
  37. Rochaix, J. D., and Malnoe, P. M., 1978, Anatomy of the chloroplast rebosomal DNA of Chlamydomonas reinhardii, Cell, 15:661–670.PubMedCrossRefGoogle Scholar
  38. Rochaix, J. D., and Darlix, J. D., 1982, Composite structure of the chloroplast 23S ribosomal RNA genes of Chlamydomonas reinhardii. Evolutionary and functional implications, J. Mol. Biol., 159:383–395.PubMedCrossRefGoogle Scholar
  39. Rochaix, J. D., and van Dillewijn, 1982, Transformation of the green alga Chlamydomonas reinhardii with yeast DNA, Nature, 296:70–72.PubMedCrossRefGoogle Scholar
  40. Rochaix, J. D., Dron, M., Schneider, M., Vallet, J. M., and Erickson, J. M., 1983, Chlamydomonas reinhardii, a model system for studying the biosynthesis of the photosynthetic Apparatus, in:“15th Miami Winter Symposium, Advances in Gene Technology: Molecular Genetics of Plants and Animals,” Ahmad, F., Downey, K., Schultz, S. and Voellmy, R. W., eds., Academic Press, In press.Google Scholar
  41. Ryan, R., Grant, D., Chiang, K. S., and Swift, H., 1978, Isolation and characterization of mitochondrial DNA from Chlamydomonas reinhardii, Proc. Nat. Acad. Sci. U.S.A., 75:3268–3272.CrossRefGoogle Scholar
  42. Sager, R., 1954, Mendelian and non-mendelian inheritance of streptomycin resistance in Chlamydomonas reinhardii, Proc. Nat. Acad. Sci. U.S. A., 40:356–363.CrossRefGoogle Scholar
  43. Schloss, J. V., Stringer, C.D., and Hartman, F. C., 1978, Identification of essential lysyl and cysteinyl residues in spinach ribulosebisphosphate carboxylase/oxygenase modeified by the affinity label N-bromoacetylethano lamine phosphate, J. Biol. Chem., 253:5707–5711.PubMedGoogle Scholar
  44. Southern, E. M., 1975, Detechtion of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol., 98:503–517.PubMedCrossRefGoogle Scholar
  45. Spreitzer, R. J., and Mets, L., 1980, Non-mendelian mutation affecting ribulose-1, 5-bisphosphate carboxylase structure and activity, Nature, 285:114–115.CrossRefGoogle Scholar
  46. Spreitzer, R. J., and Ogren, W. L., 1983, Rapid recovery of chlorplast mutation affecting ribulosebisphosphate carboxylase/oxygenase in Chlamydomonas reinhardii, Proc. Nat. Acad. Sci. U. S. A., 80:6293–6294.CrossRefGoogle Scholar
  47. Stinchcomb, J., Thomas, M., Kelly, J., Selker, E., and Davis, R. W. F 1980, Eukaryotic DNA segments capable of autonomous replication in yeast, Proc. Nat. Acad. Sci. U. S.A., 77:4559–4563.CrossRefGoogle Scholar
  48. Stinchcomb, D. T., Mann, C., Selker, E., and Davis, R. W., 1981, DNA sequences that allow the replication and segregation of yeast chromosomes, ICN-UCLA Symp., Mol. Cell. Biol., 22:473–488.Google Scholar
  49. Stringer, C. D., and Hartman, F. C., 1978, Sequences of two active site peptides from spinach ribulosebisphosphate carboxylase/oxygenase, Biochem. Biophys. Res. Commun., 80:1043–1048.PubMedCrossRefGoogle Scholar
  50. Struhl, K., 1983, The new yeast genetics, Nature, 305 391–397.PubMedCrossRefGoogle Scholar
  51. Tellenbach, M., Gerber, A., and Boschetti, A., 1983, Herbicide-binding to thy lakoid membranes of a DCMU-resistant mutant of Chlamydomonas reinhardii, FEBS Lett., 158:147–150.CrossRefGoogle Scholar
  52. Tudszynski, P., and Esser, K., 1983, Nuclear association in yeast of a hybrid vector containing mitochondrial DNA, Current Genet., 7:165–166.CrossRefGoogle Scholar
  53. Vallet, J. M., Rahire, M., and Rochaix, J. D., 1984, Localization and sequence analysis of chloroplast DNA sequences of Chlamydomonas reinhardii that promote autonomous replication in yeast, EMBO J., In press.Google Scholar
  54. van Montagu, M., and Schell, J., 1982, The Ti plasmids of Agrobacterium, Current Topics in Microbiology and Immunology, 96:237–254.PubMedGoogle Scholar
  55. Watson, J. C., and Surzycki, S. J., 1982, Extensive sequence homology in the DNA coding for elongation factor Tu from Escherichia coli and the Chlamydomonas reinhardii chloroplast, Proc. Nat. Acad. Sci. U.S.A., 79:2264–2267.CrossRefGoogle Scholar
  56. Wu, M., and Waddell, J. M., 1983, The replicative origins of chloroplast DNA in Chlamydomonas reinhardii, J. Cell Biochem. Suppl., 7B:286.Google Scholar
  57. Zakian, V., 1981, Origin of replication from Xenopus laevis mitochondrial DNA promotes high-frequence transformation of yeast, Proc. Nat. Acad. Sci. U.S.A., 78:3128–3132.CrossRefGoogle Scholar
  58. Zakian, V., and Kupfer, D. M., 1982, Replication and segregation of an unstable plasmid in yeast, Plasmid, 8:15–28.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. D. Rochaix
    • 1
  • J. Erickson
    • 1
  • M. Goldschmidt-Clermont
    • 1
  • M. Schneider
    • 1
  • J. M. Vallet
    • 1
  1. 1.Departments of Molecular Biology and Plant BiologyUniversity of GenevaGeneva 4Switzerland

Personalised recommendations