Hot Rolling Simulation of Electromagnetically Cast and Direct-Chill Cast 5182 Aluminum Alloy by Hot Torsion Testing

  • J. R. Pickens
  • W. Precht
  • J. J. Mills
Part of the Sagamore Army Materials Research Conference Proceedings book series (SAMC, volume 30)


Much of the metal produced today is fabricated by rolling, extrusion, or forging at elevated temperatures. Consequently, it is desirable to optimize hot working parameters such as reduction schedule, rolling speed, allowable extrusion ratio, extrusion speed, and working temperature to maximize productivity. In addition, it is important to hot work a metal a) in a microstructural condition that lends itself to easy hot working, e.g., properly homogenized, and b) to a microstructure that gives desirable properties in the end product.


Flow Stress Differential Thermal Analysis Homogenization Temperature Homogenization Time Typical Stress Strain Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Moore, Methods for studying hot workability: a critical assessment, in “Deformation Under Hot Working Conditions,” ISI Publication 108 (1968), pp. 103–106.Google Scholar
  2. 2.
    J.L. Uvira and J.J. Jonas, Hot compression of Armco iron and silicon steel, Trans. Met. Soc. AIME 242: 1619 (1968).Google Scholar
  3. 3.
    J.E. Hockett, Compression testing at constant true strain rates, Proc. ASTM 59: 1309 (1959).Google Scholar
  4. 4.
    G. Fitzsimons, H.A. Kuhn, and R. Venkateshuar, Deformation and fracture testing for hot working processes, J. Inst. Met. 109: 11 (1981).Google Scholar
  5. 5.
    J.A. Bailey and A.R.E. Singer, A plane strain cam plastometer for use in metal working studies, J. Inst. Met. 92:288 (1963–1964).Google Scholar
  6. 6.
    J.A. Bailey and A.R.E. Singer, Effect of strain rate and temperature on the resistance to deformation of aluminum, two aluminum alloys, and lead, J. Inst. Met. 92:404 (1963–1964).Google Scholar
  7. 7.
    G.R. Dunston and R.W. Evans, A technique for simulating the hot rolling of metals, Metallurgia 79: 96 (1969).Google Scholar
  8. 8.
    F. Gatto, The hot torsion test for resolving extrusion problems, Light Metal Age 34: 18 (1976).Google Scholar
  9. 9.
    M.M. Farag, C.M. Sellars, and W.J. McG. Tegart, Simulation of hot working of aluminum, ISI Special Report 108 (1968), pp. 60–67.Google Scholar
  10. 10.
    I. Weiss, J.J. Jonas, and G.E. Ruddle, Hot strength and structure in plain C and micro-alloyed steels during the simulation of plate rolling by torsion testing, “Proc. ASM Symposium on Process Modelling Tools,” ASM publication, Cleveland, OH (1980).Google Scholar
  11. 11.
    I. Weiss, J.J. Jonas, P.J. Hunt, and G.E. Ruddle, Simulation of plate rolling on a computerized hot torsion machine and comparison with mill results, “Int. Conf. on Steel Rolling,” Vol. 2, Iron and Steel Inst, of Japan, Tokyo, Japan (1980), pp. 1225–1236.Google Scholar
  12. 12.
    C.M. Young and O.D. Sherby, Simulation of hot forming operations by means of torsion testing, Tech. Report AFML-TR-69-294, Feb. 1970.Google Scholar
  13. 13.
    P. Blain and C. Rossard, Machines de torsion et de traction permettant la simulation au laboratoire des processus industriels de mise en forme par deformation plastique a chaud, “Lamiroirs,” IRSID (1968), pp. 1–18.Google Scholar
  14. 14.
    J.J. Mills, K.C. Nielsen, and W. Merriam, Automating a hot torsion machine, in “Novel Techniques in Metal Deformation Testing,” R.H. Wagoner, ed., TMS-AIME Conference Proceedings (1983), pp. 343–358.Google Scholar
  15. 15.
    D.S. Fields and W.A. Backofen, Proc. ASTM, 57: 1259 (1957).Google Scholar
  16. 16.
    D.E.J. Talbot and C.E. Ransley, The addition of bismuth to Al-Mg alloys to prevent embrittlement by sodium, The Bulletin of the Bismuth Institute 23: 1 (1979).Google Scholar
  17. 17.
    D.E.J. Talbot and C.E. Ransley, The addition of bismuth to aluminum-magnesium alloys to prevent embrittlement, Met. Trans. A 8A: 1149 (1977).CrossRefGoogle Scholar
  18. 18.
    C.E. Ransley and D.E.J. Talbot, The embrittlement of aluminum-magnesium alloys by sodium, J. Inst. Met., 88:150 (1959–1960).Google Scholar
  19. 19.
    A. Gittins, J.R. Everett, and W.J. McG. Tegart, “Strength of steels in hot strip mill rolling” Met. Technol. 4: 378 (1977).Google Scholar
  20. 20.
    P.F. Thomson and N.M. Burman, Edge cracking in hot-rolled Al-Mg alloys, Mater. Sci. and Eng. 45: 95 (1980).CrossRefGoogle Scholar
  21. 21.
    Atlas of microstructures of industrial alloys, in_ “Metals Handbook,” Vol. 7, Eighth Edition, ASM (197 2), p. 244.Google Scholar
  22. 22.
    J.R. Cotner and W.J. McG. Tegart, High temperature deformation of aluminum-magnesium alloys at high strain rates, J. Inst. Met. 97: 73 (1969).Google Scholar
  23. 23.
    R. Horiuchi, J. Kaneko, and A.F. Elsebai, The characteristics of the hot torsion test for assessing hot workability of aluminum alloys, ISAS Report No. 443, Vol. 35 ( 1 ), Tokyo, Japan, February 1970.Google Scholar
  24. 24.
    J. Coupry, Utilization de la torsion à chaud dans l’étude des processus industriels de deformation, Rev. Alum. May: 259 (1976).Google Scholar
  25. 25.
    Private communication concerning proprietary information with J.P. Faunce, Martin Marietta Laboratories, Baltimore, MD, April, 1981.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • J. R. Pickens
    • 1
  • W. Precht
    • 1
  • J. J. Mills
    • 1
  1. 1.Martin Marietta LaboratoriesBaltimoreUSA

Personalised recommendations