Recent Advances in Solidification Processing

  • D. Apelian
Part of the Sagamore Army Materials Research Conference Proceedings book series (SAMC, volume 30)


Control of the cast structure is the underlying object of solidification processing. Recent advances and developments in solidification processing are making possible the production of high purity castings, fine grained super alloy and titanium ingots, rapidly solidified structural components and castings having unique microstructures. In addition, recent advances in processing technology have developed which now allow us to have better producibility and reliability in aluminum castings. These developments have all stemmed from a good understanding of the science of solidification processing as well as an appreciation of the merits of structural control via processing. Specifically, the following recent developments will be reviewed and discussed: (i) Vacuum Arc Double Electrode Remelting (VADER); (ii) Rapid Solidification by Plasma Deposition (RSPD); (iii) rapid cycle casting of ferrous components by Diffusion Solidification; (iv) refining of the melt via filtration prior to casting; and (v) thermal analysis of aluminum castings.


Solidification Processing Rapid Solidification Mushy Zone Aluminum Casting Conventional Casting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.H. Soykan, J.S. Huntington: U.S. Patent 4,261,412, April 14, 1981.Google Scholar
  2. 2.
    J.W. Pridgeon, F.N. Darmara, J.S. Huntington, W.H. Sutton: “Principles and Practices of Vacuum Induction Melting and Vacuum Arc Remelting”, in Metallurgical Treatises, J.K. Tien and J.F. Elliott: editors, Published by AIME-TMS, November 1981, Warrendale, PA.Google Scholar
  3. 3.
    W. Klement, R. Willens and P. Duwez: Nature, 1960, 187, p. 869.CrossRefGoogle Scholar
  4. 4.
    M. Lebo and N.J. Grant: Met. Trans., 1974, 5, p. 1547.CrossRefGoogle Scholar
  5. 5.
    M.C. Flemings: Report of the ARPA Materials Research Council, 1976.Google Scholar
  6. 6.
    P.R. Holiday, R. Cox and R.J. Patterson: in “Rapid Solidification Processing Principles and Technologies”, Eds. R. Mehrabian, B.H. Kear and M. Cohen, p. 246; 1978, Baton Rouge, LA, Claitors Publishing Division.Google Scholar
  7. 7.
    H.H. Liebermann: “Coaxial Jet Melt-Spinning of Glassy Alloy Ribbons:, Technical Information Series”, Report No. 80 CRD 117, June 1980.Google Scholar
  8. 8.
    E.M. Brienan and B.H. Kear: in “Rapid Solidification Processing Principles and Technologies”, Eds. R. Mehrabian, B.H. Kear and M. Cohen, p. 87; 1978, Baton Rouge, LA, Claitors Publishing Div.Google Scholar
  9. 9.
    D.A. Gerdeman and N.L. Hecht: “Arc Plasma Technology in Materials Science”, 1972, New York, Wien, Springer-Verlag.Google Scholar
  10. 10.
    P.R. Dennis et al.: “Plasma Jet Technology”, 1965, NASA Report No. SP-5033.Google Scholar
  11. 11.
    B. Gross, B. Grycz and K. Miklossy: “Plasma Technology”, English translation edited by R.C.G. Leckey, 1969, American Elsevier Publishing Company, New York.Google Scholar
  12. 12.
    K.D. Krishnanand and R.W. Chan: “Rapidly Quenched Metals”, Eds. N.J. Grant and B.C. Giessen, p. 67, 1976, M.I.T., Cambridge.Google Scholar
  13. 13.
    S. Shankar, D.E. Koenig and L.E. Dardi: J. of Metals, Oct. 1981, p. 13.Google Scholar
  14. 14.
    M.R. Jackson, J.R. Rairden, J.S. Smith and R.W. Smith: J. of Metals, Nov. 1981, p. 23.Google Scholar
  15. 15.
    G.M. Giannini, “The Plasma Jet”, Sci. Amer., p. 2, Aug. 1967.Google Scholar
  16. 16.
    T.A. Roseberry and F.W. Boulger, “A Plasma Flame Spray Handbook”, Rpt. No. MT-043, Naval Sea Systems Command, Dept. of the Navy, March 1977.Google Scholar
  17. 17.
    “RSPD for Fabrication of Advanced Aircraft Gas Turbine Components”, P.A. Siemers, General Electric Company, Report to Air Force Systems Command, January 1982.Google Scholar
  18. 18.
    D. Apelian et al.: “Melting of Powder Particles in a Plasma Jet”, Conference Proceedings of the 6th International Symposium on Plasma Chemistry, Montreal, Canada, July 1983.Google Scholar
  19. 19.
    M. Paliwal, D. Apelian, G. Langford; Met. Trans., 1980, Vol. 11B, pp. 39–50.Google Scholar
  20. 20.
    D. Apelian, G. Langford: Drexel University, unpublished work.Google Scholar
  21. 21.
    G. Langford, D. Apelian: Journal of Metals, Vol. 32, September 1980, pp. 28–33.Google Scholar
  22. 22.
    G. Langford, R.E. Cunningham: Met. Trans., 1978, Vol. 9B, pp. 5–19.Google Scholar
  23. 23.
    C. Lall, D. Apelian, G. Langford: “Aluminum-Lithium Castings Made by Diffusion Solidification”, 109th AIME Annual Meeting, Las Vegas, Nevada, February 1980.Google Scholar
  24. 24.
    L.C. Blayden and K.J. Brondyke: “In-Line Treatment of Molten Aluminum”, Light Metals, AIME, pp. 473–503, 1973.Google Scholar
  25. 25.
    D. Apelian and R. Mutharasan, “Filtration: A Melt Refining Method”, J. Metals, 32 (9), pp. 14–19, 1980.Google Scholar
  26. 26.
    R. Mutharasan, D. Apelian and C. Romanowski, “A Laboratory Investigation of Aluminum Filtration Through Deep-Bed and Ceramic Open-Pore Filters”, J. Metals, 33 (12), p. 12–17, 1981.Google Scholar
  27. 27.
    D. Apelian, et. al., “Commercially Available Porous Media for Molten Metal Treatment: A Property Evaluation”, Light Metals, Ed., J. Andersen, Pub. AIME-TMS, 1982.Google Scholar
  28. 28.
    S. Ali, D. Apelian and R. Mutharasan, “Filtration of Steel Melts-A Refining Process”, Submitted to Met. Trans, June 1983.Google Scholar
  29. 29.
    W. Sutton, D. Apelian, “Filtration of High-Temperature Vacuum Melted Alloys”, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • D. Apelian
    • 1
  1. 1.Department of Materials EngineeringDrexel UniversityPhiladelphiaUSA

Personalised recommendations