Skip to main content

Theoretical Basis of Mutagenesis

  • Chapter
Mutation, Cancer, and Malformation

Part of the book series: Environmental Science Research ((ESRH,volume 31))

  • 356 Accesses

Summary

Mutations are changes in the hereditary material which are propagated throuah successive generations in cells and whole organisms. Mutations can occur spontaneously or under the influence of physical and chemical mutagenic agents. Depending on the type and size of the change in the genome we distinguish: point or gene mutations (base pair substitutions, frameshift mutations, small deletions), chromosome mutations or aberrations (e. g. , large deletions, translocations), aneuploidy (trisomy, monosomy, etc. ) and genome mutations (polyploidy). All these types of mutations are known to occur in man. Their phenotypic consequences can, even within one class of mutation, vary from lethality, malformations, and metabolic disorders to mild or even hardly detectable changes. Estimates suggest that a minimum of 10–11% of all live born will manifest at birth, or during development, or later in adulthood, a very wide range of serious genetic defects.

The mechanisms by which mutations are induced by mutagens are only poorly understood. A number of model systems (e.g., bacteria, fungi, insects, mammalian cells in culture) are suitable to study particular aspects of mutagenesis in prokaryotic and eukaryotic (nucleosomal) chromosomes.

In wild-type cells the induced frequency of a given type of mutation is the result of a complex interaction between normal DNA replication, error-free and error-prone DNA repair activities, and recombinational events. In some cases, in which the genetic control of the crucial steps is known (e.g., the rec-lex-dependent error-prone repair in E. coli), detailed and experimentally testable models could be worked out. In other cases (e.g., the induction of sister chromatid exchanges or chromosomal aberrations in eukaryotes) the models are less detailed. Some reasons for this are: the low number of suitable mutants available; multiple types of mutations induced by one particular mutagen; and difficulty in identifying the premutational lesion(s), particularly because of the insensitivity of the available biochemical assays. The complexity of the chemical mutagenesis is also reflected in the observation that differnt mechanisms can lead to the same type of mutation, e.g., the induction of chromosome aberrations is dependent on the normal S-phase DNA-synthesis with some agents but not with others. In addition, not only primary DNA damage (such as strand breaks, covalently bound mutagens, intercalations) but also non-DNA damage (e.g., effects of metals on the enzymes of DNA-synthesis, or interaction of spindle poisons with the polymerization of microtubules, or nucleotide pool imbalances) can lead to mutations.

A discussion of some models of the productions of different types of mutation illustrates our present knowledge on basic mutation mechanisms in pro- and eukaryotes. The importance of the knowledge of these mechanisms for genetic toxicology has to be stressed. Vfe can learn more about the types of lesions for which we should look in mutagenicity screening tests, and we can approach the construction of better defined and more sensitive test systems and test batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, P. J. and R. Saffhill (1977) DNA synthesis with methylated poly (dA-dT): possible role of 0-methylthymidine as a promutagenic base.Nucleic Acids Res. 4: 761 – 769.

    Google Scholar 

  2. Abbott, P. J. and R. Saffhill (l979) DNA synthesis with methylated poly (dC-dG) templates: evidence for a competitive nature to miscoding by 0-methylguanine.Biochim.Biophys.Acta562:51–61.

    Google Scholar 

  3. Adler, I. D. Tl978) The cytogenetic heritable translocation test.Biol.Zentralblatt97:441–451.

    Google Scholar 

  4. Adolph, K. W. (1981) A serial sectioning study of the structure of human mitotic chromosomes.Eur.J.Cell Biol. 24: 146 – 153.

    Google Scholar 

  5. Albert, B. and R. Sternglanz (1977) Recent excitement in the DNA replication problem.Nature(Lond) 269: 655 – 661.

    Google Scholar 

  6. Baimai, V. and S. Kitthawee (1981) A spontaneous tandem duplication in aDrosophilachromosome.Experiential. 37: 345 – 346.

    Google Scholar 

  7. Baker, B. S. , J. B. Boyd, A. T. Carpenter, M. M. Green, T. D. Nguyen, P. Ripoll and P. D. Smith (1976) Genetic controls of meiotic recombination and somatic DNA metabolism inDrosophila melanogaster.Proc.Natl.Acad.Sci. USA 73: 4140 – 4144.

    ADS  Google Scholar 

  8. Banks, G. R. and G. T. Yarranton (1976) DNA polymerase fromUstilago maydis. 2. Properties of associated deoxyribonuclease activity.Eur.J.Biochem. 62: 143 – 150.

    Google Scholar 

  9. Becker, E. F. , B. K. Zimmerman and E. P. Geiduschek (1964) Structure and function of cross-linked DNA. 1. Reversible denaturation andBacillus subtilistransformation.J.Mol.Biol. 8: 377 – 391.

    Google Scholar 

  10. Bender, M. A. , H. G. Griggs and J. S. Bedford (1874) Mechanisms of chromosomal aberration production. III. Chemicals and ionizing radiation.Mutation Res. 23: 197 – 212.

    Google Scholar 

  11. Bessman, M. J. , N. Muzyczka, M. F. Goodman and R. L. Schnaar (1974) Studies on the biochemical basis of spontaneous mutation. II. The incorporation of a base and its analogue into DNA by wild–type, mutator and antimutator DNA polymerases.J.Mol.Biol. 88: 409 – 421.

    Google Scholar 

  12. Billen, D. (19691 Replication of the bacterial chromosome: location of new initiation sites after irradiation.J.Bacterid. 97: 1169 (1969).

    Google Scholar 

  13. Borisy, G. G. and E. W. Taylor (1967) The mechanism of action of colchicine.J.Cell.Biol. 34: 525 – 535.

    Google Scholar 

  14. Bridges, C. B. (1936) The Bar “gene” a duplication.Science38: 210 – 211.

    Google Scholar 

  15. Bridges, B. A. and R. P. Mottershead (1978) Mutagenic DNA repair inEscherichia coli. VII. Constitutive and inducible manifestations.Mutation Res. 52: 151 – 159.

    Google Scholar 

  16. Bruhin, A. (1955) Uber diepolyploidisierende Wirkung eines Samenbeizmittels.Phytopathol. Z. 23: 381 – 394.

    Google Scholar 

  17. Brutlag, D. and A. Romberg (1972) Enzymatic synthesis of deoxynucleic acid. XXXVI. A proofreading function for the 3’–5’ exonuclease activity in deoxyribonucleic acid polymerase.J.Biol.Chem. 247: 241 – 248.

    Google Scholar 

  18. Bukhari, A. I. , J. A. Shapiro and S. L. Adhya (1977)DNA Insertion Elements,Plasmids and Episomes. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 1 – 782.

    Google Scholar 

  19. Butler, P. J. G. and J. O. Thomas (1980) Changes in chromatin folding in solution.J.Mol.Biol. 140: 505 – 529.

    Google Scholar 

  20. Buttula, N. and L. A. Loeb (19767 On the fidelity of DNA replication.J.Biol.Chem. 251:982–986.

    Google Scholar 

  21. Ganpbell, A. M. (1962) Episomes.Adv.Genet. 11: 101 – 145.

    Google Scholar 

  22. Chang,L. M. S. (1977) DNA polymerase from bakers-yeast.J.Biol.Chem. 252: 1873 – 1880.

    Google Scholar 

  23. Comings/ D. E. (1972) Structure and function of chromatin.Adv.Hum.Genet. 3: 237 – 431.

    Google Scholar 

  24. Comings, D. E. (1978) Mechanisms of chromosome banding and inplication for chromosome structure.Ann.Rev.Genet. 12: 25 – 46.

    Google Scholar 

  25. Daune, M. P. and R. P. P. Fuchs (1977) Structural modification of DNA after covalent binding of a carcinogen.Collog.Int.CNRS, 256: 83.

    Google Scholar 

  26. Delius, H. and W. Worcel (1974) Electron microscopic visualization of the folded chromosome ofEscherichia coli.J.Mol.Biol. 82: 107 – 109.

    Google Scholar 

  27. Deutsch, W. A. and S. Linn (1979) DNA binding activity from cultured human fibroblasts that is specific for partially depurinated DNA and that inserts purines into apurinic sites.Proc.Natl.Acad.Sci.USA76: 141 – 144.

    Google Scholar 

  28. Dcwsett, A. P. and M. W. Young (1982) Differing levels of dispersed repetitive DNA among closely related species of Drosophila.Proc.Natl.Acad.Sci.USA79: 4570 – 4574.

    Google Scholar 

  29. Drake, J. W. (1969a) Mutagenic mechanisms.Ann.Rev.Genet. 3: 247 – 268

    Google Scholar 

  30. Drake J. W. (1969b) Comparative rates of spontaneous mutation.Nature221: 1132.

    Google Scholar 

  31. Drake, J. W. (1970)The Molecular Basis of Mutation. Holden-Day, San Francisco, pp. 1 – 273.

    Google Scholar 

  32. Drake, J. W. (1977) Fundamental mutagenic mechanisms and their significance for environmental mutagenesis,in:Progress in Genetic Toxicology, D. Scott, B. A. Brdiges and F. H. Sobels, (Eds. ), Elsevier/North Holland Press, Amsterdam-New York-Oxford, pp. 43 – 55.

    Google Scholar 

  33. Drake, J. W. and R. H. Baltz (1976) The biochemistry of mutagenesis.Ann.Rev.Biochem. 45: 11 – 37.

    Google Scholar 

  34. Dupraw, E. J. (1965) Macromolecular organization of nuclei and chromosomes - a folded fibre model based on whole-mount electron microscopy.Nature206: 338 – 343.

    Google Scholar 

  35. DuPraw, E. J. (1966T Evidence for a “folded-fibre” organization in human chromsomes. Nature 209:577–581.

    Google Scholar 

  36. DuPraw, E. J. (1968)Cell and Molecular Biology. Academic Press, New York-London.

    Google Scholar 

  37. Eigsti, O. J. and P. Dustin (1954)Colchicine in Agriculture, Medicine, Biology and Chemistry. The Iowa State College Press, Ames.

    Google Scholar 

  38. Evans, H. J. (1962) Chromosome aberrations induced by ionizing radiations.Int. Rev, cytol. 13: 221 – 321.

    Google Scholar 

  39. Evans, H. J. (1974) Effects of ionizing radiation on mammalian chromosomes in:Chromsomes and Cancer, J. German (Ed. ), John Wiley, New York, pp. 191 – 238.

    Google Scholar 

  40. Evans, H. J. (1977) Molecular mechanisms in the induction of chromosome aberrations, in:Progress in Genetic Toxicology, D. Scott, B. A. Bridges and F. H. Sobels (Eds. ), Elsevier, North Holland, Amsterdam, New York, Oxford, pp. 57 – 74.

    Google Scholar 

  41. Evans, H. J. (1980) How effects of chemicals might differ from those of radiations in giving rise to geneticl ill– health in man, in:Progress in Environmenta 1 Mutagenesis, M. Alacevic (Ed. ), Elsevier/North Holland, Amsterdam, New York, Oxford, pp. 3 – 21.

    Google Scholar 

  42. Evans, H. J. and D. Scott (1964) Influence of DNA synthesis on the production of chromatid aberrations by X-rays and maleic hydrazide inVicia faba. Genetics 49: 17 – 38.

    Google Scholar 

  43. Ferreira, N. R. and A. Buoniconti (1968) Trisomy after colchicine therapy.Lancetii: 1304.

    Google Scholar 

  44. Ferreira, N. R. and O. Frota-Pessoa (1969) Trisomy after cholchicine therapy.Lanceti:1160–1161.

    Google Scholar 

  45. Finch, J. T. and A. Klug’ (1976) Solenoidal model for superstructure in chromatin.Proc. Natl. Acad. Sci. USA73: 1897 – 1901.

    ADS  Google Scholar 

  46. Flamm, W. G. , N. J. Bernheim and L. Fishbein (1970) On the existence of intrastrand cross-links in DNA alkylated with sulfur mustard.Biochim. Biophys. Acta224: 657 – 659.

    Google Scholar 

  47. Freese, E. (1959a) The difference between spontaneous and base-analogue induced mutations of phage T4.Proc. Natl. Acad. Sci. USA45: 622 – 633.

    Google Scholar 

  48. Freese, E. (1959b) The specific mutagenic effect of base analogues on phage T4.J. Mol. Biol. 1: 87 – 95.

    Google Scholar 

  49. Freese, E. (1963) Molecular nechanisms of mutations, in:Molecular Genetics, J. H. Taylor (Ed. ), Plenum Press, New York, pp. 207 – 269.

    Google Scholar 

  50. Gaulden, M. E. and J. G. Carlson (1951) Cytological effects of colchicine in the grasshopper neuroblastin vitrowith special reference to the origin of the spindle.Exp. Cell. Res. 2: 416.

    Google Scholar 

  51. Gebhart, E. , G. Schwanitz and G. Hartwich (1969) Zy togenetische Wirkung von Vincristin auf menschliche Leukozytenin vivoundin vitro.Med. Klin. 51: 2366 – 2371.

    Google Scholar 

  52. Generoso, W. M. , W. L. Russell, S. W. Huff, S. K. Stout and D. G. Gosslee (1974) Effects of dose on the induction of dominant-lethal mutations and heritable translocations with ethyl methanesulfonate in male mice.Genetics77: 741 – 752.

    Google Scholar 

  53. Generoso, W. M. , K. T. Cain, S. W. Huff and D. G. Gosslee (1978) Heritable translocation test in mice, in:Chemical Mutagens Principles and Methods for Their Detection, A. Hollaender and F. J. deSerres (Eds. ), Plenum Press, New York, Vol. 5, pp. 55 – 77.

    Google Scholar 

  54. Gerchman, L. L. and D. B. Ludlum (1973) The properties of 06-methylguanine in templates for RNA polymrase.Biochim. Biophys. Acta308: 310 – 316.

    Google Scholar 

  55. Gersch, N. F. and D. O. Jordan (1965) Interaction of DNA with aminoacridines.J. Mol. Biol. 13: 138 – 156.

    Google Scholar 

  56. Green, M. H. L. (1979T Mutagenic consequences of chemical reaction with DNA, in:Chemical Carcinogens and DNA, P. L. Grover (Ed. ), CRC Press, Boca Raton, Florida, Vol. II, pp. 95 – 132.

    Google Scholar 

  57. Green, M. M. (1959) Reverse mutation inDrosophilaand the status of the particulate gene.Genetica29: 1 – 38.

    Google Scholar 

  58. Green, M. M. (1982) Genetic instability inDrosophila melanogaster: Deletion induction by insertion sequences.Proc. Natl. Acad. Sci. USA79: 5367 – 5369.

    Google Scholar 

  59. Grunberger, D. and I. B. Vfeinstein (1979) Conformational changes in nucleic acids modified by chemical carcinogens, in:Chemical Carcinogens and DNA, P. L. Grover (Ed. ), CRC Press, Boca Raton, Florida, Vol. II, pp. 59 – 93.

    Google Scholar 

  60. Hayes, W. (1968)The Genetics of Bacteria and Their Viruses, 2nd Edition, Blackwell Scientific Publications, Oxford, Edinburgh.

    Google Scholar 

  61. Hendler, S. , E. Furer and P. R. Srinivasan (1970) Synthesis and chemical properties of monomers and polymers containing 7 me thy 1 guanine and an investigation of their substrate or template properties for bacterial DNA or RNA polymerases.Biochemistry9: 4141 – 4153.

    Google Scholar 

  62. Henrich, R. T. , T. Nogawa and A. Morishima (1980) In vitro induction of segregational errors of chromosomes by natural cannabinoids in normal human lymphocytes.Environ. Mutagen. 2: 139 – 147.

    Google Scholar 

  63. Hertwig, R. (1903) Ueber die Korrelation von Zell und Kerngrosse und ihre Bedeutung fur die geschlechtliche Differenzierung und die Teilung der Zelle.Biol. Zbl. 23: 108.

    Google Scholar 

  64. Hibner, U. and B. M. Albers (1980) Fidelity of DNA replication catalysedin vitroon a natural DNA template by the T4 bacteriophage multi-enzyme complex.Nature285: 300 – 305.

    Google Scholar 

  65. Hoefnagel, D. (1969) Trisomy after colchicine therapy.Lanceti:1160.

    Google Scholar 

  66. Hollstein, M. , J. McCann, F. A. Angelosanto and W. W. Nichols (1979) Short–term tests for carcinogens and mutagens.Mutation Res. 65: 133 – 226.

    Google Scholar 

  67. Howard, B. D. and J. Tessman (1964) Identification of the altered bases in mutated single stranded DNA. II. In vivo mutagenesis by 5-BUdR and 2-AP.J. Mol. Biol. 9: 364 – 371.

    Google Scholar 

  68. Howard–Flanders, P. (1973) DNA repair and recombination.Brit. Med. Bull. 29: 226 – 235.

    Google Scholar 

  69. IARC (1979) Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. International Agency for Research on Cancer, Lyon, IARC Monographs, Suppl. 1, pp. 1 – 71.

    Google Scholar 

  70. Isono, K. and J. Yourno (1974) Chemical carcinogens as frameshift mutations:SalmonellaDNA sequence sensitive to mutagenesis by polycyclic carcinogens.Proc.Natl.Acad.Sci. USA 71: 1612 – 1617.

    ADS  Google Scholar 

  71. Jenkins, N. A. , N. G. Copeland, B. A. Taylor and B. K. Lee (1981) Dilute (d) coat color nutation of DBA/2J mice is associated with the site of integration of an ecotropic Mulv genome.Nature293: 370 – 374.

    Google Scholar 

  72. Kavenoff, R. and B. H. Zimm (1973) Chromosome-sized DNA molecules fromDrosophila. Chromosoma 41: 1 – 27.

    Google Scholar 

  73. Kelner, A. (1953) Growth, respiration and nucleic acid synthesis in UV-irradiated and in photo-reactivatedEscherichia coli. J. Bacteriol. 65: 252.

    Google Scholar 

  74. Kihlman, B. A. Tl964l The production of chromosomal aberrations by streptonigrin inVicia faba.Mutation Res. 1:54–62.

    Google Scholar 

  75. Kihlnan, B. A. , A. T. Natarajan and H. C. Andersson (1978) Use of 5-bromodeoxyuridine-labelling technique for exploring mechanisms involved in the formation of chromosomal aberrations. I. G2 experiments with root tips ofVicia faba. Mutation Res. 55: 85 – 120.

    Google Scholar 

  76. Kimball, R. F. (1978) The relation of repair phenomena to mutation induction in bacteria.Mutation Res. 55: 85 – 120.

    Google Scholar 

  77. Kirtikar, D. M and D. A. Goldthwait (1974) The enzymatic release of 06 -methy 1 guanine and 3-methyladenine from DNA reaction with the carcinogen N-methyl-N-nitrosourea.Proc. Natl. Acad. Sci. USA71: 2022 – 2026.

    Google Scholar 

  78. Kolata, G. B. (1980) Genes and cancer: The story of Wilms tumor.Science207: 970 – 971.

    Google Scholar 

  79. Romberg, A. (1979) Aspects of DNA replication.Cold Spring Harbor Symp. Quant. Biol. 43: 1 – 9.

    Google Scholar 

  80. Runz, B. A. (1982) Genetic effects of deoxyribonucleotide pool imbalances. Environ. Mutagen. 4: 695 – 725.

    Google Scholar 

  81. Labhart, P. , T. Roller and H. Wunderli (1982) Involvement of higher order chromatin structures in metaphase chromosome organization. Cell 30: 115 – 121.

    Google Scholar 

  82. Laurence, D. J. R. (1963) Chain breakage of deoxyribonucleic acid following treatment with lew doses of sulphur mustand.Proc. Royal Soc. A 271: 520 – 530.

    ADS  Google Scholar 

  83. Lawley, P. D. (1966) Some effects of chemical mutagens and carcinogens on nucleic acids.Progr. Nucl. Acid. Res. Mol. Biol. 5: 89 – 131.

    Google Scholar 

  84. Lawley, P. D. and P. Brookes (1963) Further studies on the aklylation of nucleic acids and their constituent nucleotides.Biochem. J. 89: 127 – 138.

    Google Scholar 

  85. Lawley, P. D. , J. H. Lethbridge, P. A. Edwards and R. V. Shooter (1969) Inactivation of bacteriophage T7 by mono and bifunctional sulphur mustard in relation to cross–linking and depurination of bacteriophage DNA.J. Mol. Biol. 38: 181 – 198.

    Google Scholar 

  86. Lawley, P. D. , A. R. Cra thorn, S. A. Shah and B. A. Smith (1972) Biomethylation of deoxyribonucleic acid in cultured human tumor cells (Hela). Methylated bases other than 5- methylcytosine not detected.Biochem. J. 128: 133 – 138.

    Google Scholar 

  87. Lawley, P. D. , D. J. Orr, P. B. Farrrer and M. Jarman (1973) Reaction products from Nnne thyl-N-ni trosourea and DNA containing thymidine residues, gynthesis and identification of a new methylation product, 04 methylthymidine.Biochem. J. 135: 193 – 201.

    Google Scholar 

  88. Ledda, G. M. , A. Columbano, P. M. Rao, S. Rajalakshmi, S. Sarma, D. S. R. Sarma (1980)In vivoreplication of carcigogen-inodified rat liver DNA: increased susceptibility of 0-methylguanine compared to N-methylguanine in replicated DNA to S-l-nuclease.Biochem.Biophys.Res.Comm. 95:816–821.

    Google Scholar 

  89. Lefevre, G. (1976) A photographic representation and interpretation of the polytene chromosomes ofDrosophila melanogastersalivary glands, in:The Genetics and Biology of Drosophila, M. Ashburner and E. Novitski (Eds. ), Academic Press, New York, Vol. la, pp. 32 – 67.

    Google Scholar 

  90. Lejeune, J. , J. Lafourcade, R. Berger, J. Vialatte, M. Roeswillwald, P. Seringe, and R. Turpin (1963) Trois cas de deletion partielle du bras court d’un chromosome 5.C. R. Acad. Sci. (Paris) 257: 3098 – 3102.

    Google Scholar 

  91. Lerman, L. S. (1963) The structure of the DNA-acridine complex.Proc. Natl. Acad. Sci. USA49: 94 – 102.

    ADS  Google Scholar 

  92. Lerman, L. S. (1966) Acridine mutagens and DNA structure.J. Cell. Comp. Physiol. 64 (Suppl. 1): 1 – 18.

    Google Scholar 

  93. Lindahl, T. (1976) New class of enzymes acting on damaged DNA.Nature256: 64 – 66.

    Google Scholar 

  94. Lindahl, T. and A. Andersson (1972) Rate of chain breakage at apurinic sites in double stranded DNA.Biochemistry11: 3618 – 3623.

    Google Scholar 

  95. Lindahl, T. and B. Nyberg (1972) Rate of depurination of native deoxyribonucleic acid.Biochemistry11: 3610 – 3618.

    Google Scholar 

  96. Liquori, A. M. , B. DeLerma, F. Ascoli, C. Botre, and M. Trasciatti (1962) Interaction between DNA and polycyclic aromtic hydrocarbons.J. Mol. Biol. 5: 521 – 526.

    Google Scholar 

  97. Livneh, Z. , D. Elad, and J. Sperling (1979) Enzymatic insertion of purine bases into depurinated DNAin vitro.Proc. Natl. Acad. Sci. USA76: 1089 – 1093.

    Google Scholar 

  98. Loeb, L. A. (1974) Eukaryotic DNA polymerases, in:The Enzymes, P. Boyer (Ed. ), Academic Press, New York, Vol. 10, pp. 173 – 209.

    Google Scholar 

  99. Loveless, A. (1969) Possible relevance of 0-alkylation of deoxyguanosine to mutagenicity and carcinogenicity of nitrosamines and nitrosamides.Nature223: 206 – 207.

    Google Scholar 

  100. Ludlum, D. B. (1970) The properties of 7 methyl guanine containing templates for RNA polymerase.J. Biol. Chem. 245: 477 – 482.

    Google Scholar 

  101. Lutz, W. (1979)in vivocovalent binding of organic chemicals to DNA as a quantitative indicator in the process of chemical carcinogenesis.Mutation Res. 65:289–356.

    Google Scholar 

  102. Luzzati, D. (1962) The action of nitrous acid on transforming desoxyribonucleic acids.Biochem. Biophys. Res. Comm. 9: 508 – 516.

    Google Scholar 

  103. Marsden, M. P. F. and U. K. Laemmli (1979) Metaphase chromosome structure: evidence for a radial loop model.Cell17: 849 – 858.

    Google Scholar 

  104. McCann, J. , E. Choi, E. Yamasaki, and B. N. Ames (1975) Detection of carcinogens as mutagens in the Salmonella, microsome test: Assay of 300 chemicals.Proc. Natl. Acad. Sci. USA72: 5135 – 5139.

    Google Scholar 

  105. McGhee, J. D. and G. Felsenfeld (1980) Nucleosome structure.Ann. Rev. Biochem. 49: 1115 – 1156.

    Google Scholar 

  106. McKusick, V. A. (1978)Mendelian Inheritance in Man, ( 5th edition ), The Johns Hopkins University Press, Baltimore, pp. 1 – 975.

    Google Scholar 

  107. Margison, G. P. , and P. J. O’Connor (1973) Biological implications of the instability of N-glycosidic bond of 3-metnyldeoxyadeonsine in DNA.Biochim. Biophys. Acta331: 349 – 356.

    Google Scholar 

  108. Margison, G. P. , M. J. Capps, P. J. O’Connor, and A. A. Craig (1973) Loss of 7 methylguanine from rat liver DNA after methylationin vivowith methyl methanesulfonate or dimethyl nitrosamine.Chem. Biol. Interact. 6: 119 – 124.

    Google Scholar 

  109. Margoliash, E. , and E. L. Smith (1956) Structural and functional aspects of cytochrome c in relation to evolution, in:Evolving Genes and Proteins, V. Bryson and H. J. Vogel (Eds. ), Academic Press, New York, pp. 221 – 242.

    Google Scholar 

  110. Marinus, M. G. , and N. R. Morris (1975) Pleiotropic effects of a DNA adenine methylation mutant (dam-3) inEscherichia coli. Mutation Res. 28: 15 – 26.

    Google Scholar 

  111. Maneghini, R. (1976) Gaps in DNA synthesis by ultraviolet light irradiated W 138 human cells.Biochim. Biophys. Acta425: 419 – 427.

    Google Scholar 

  112. Mildvan, A. S. , and L. A. Loeb (1979) The role of metal ions in the mechanisms of DNA and RNA polymerases.CRC Crit. Rev. Biochem. 6: 219 – 244.

    Google Scholar 

  113. Mufti, S. (1979) Mutator effects of alleles of phage T4 genes 32, 41, 44, and 45 in the presence of an antimutator polyerase.Virology94: 1 – 9.

    Google Scholar 

  114. Mutfi, S. , and H. Bernstein (1974) The DNA–delay mutants of bacteriophage T4.J. Virol. 14: 860 – 871.

    Google Scholar 

  115. Muzyczka, N. , R. L. Poland, and M. J. Bessman (1972) Studies on the biochemical basis of spontaneous mutation. I. A comparison of the deoxyribonucleic acid polymerase of mutator, antimutator and wild–type strains of bacteriophage T4.J. Biol. Chem. 247: 7116 – 7122.

    Google Scholar 

  116. Natarajan, A. T. , and G. Obe (1978) Molecular mechanisms involved in the production of chromosomal aberrations. I. Utilization ofNeurosporaendonuclease for the study of aberration production in G2 stage of the cell cycle.Mutation Res. 52: 137 – 149.

    Google Scholar 

  117. Natarajan, A. T. , G. Obe, A. A. van Zeeland, F. Palitti, M. Meijers and E. A. M. Verdegaal-Immerzeel (1980) Molecular mechanisms involved in the production of chromosomal aberrations. II. Utilization ofNeurosporaendonuclease for the study of aberration production by X-rays in G1 and G2 stages of the cell cycle.Mutation Res. 69: 293 – 305.

    Google Scholar 

  118. Neary, G. T. , J. R. K. Savage, and H. J. Evans (1964) Chromatid aberrations inTradescantiapollen tubes induced by monochromatid X-rays of quantum energy 3 and 1. 5 keV.Int. J. Radiat. Biol. 8: 1 – 19.

    Google Scholar 

  119. Neel, J. V. (1983) Frequency of spontaneous and induced “point” mutations in higher eukaryotes.J. Heredity74: 2 – 15.

    Google Scholar 

  120. Oeda, K. , T. Horiuchi, and M. Sekiguchi (1981) Molecular cloning of the uvr D gene ofEscherichia colithat controls ultraviolet sensitivity and spontaneous mutation frequency.Mol. Gen. Genet. 101: 227 – 244.

    Google Scholar 

  121. Oeda, K. , T. Horiuchi, and M. Sekiguchi (1982) The uvr D gene ofE. coliencodes a DNA-dependent AT Pase.Nature298: 98 – 100.

    Google Scholar 

  122. Ohno, S. (1970)Evolution by Gene Duplication, Springer-Verlag, Heidelberg, New York, pp. 1 – 160.

    Google Scholar 

  123. Okada, T. A. , and D. E. Comings (1980) A search for protein cores in chromosomes: is the scaffold an artifact?Am. J. Hum. Genet. 32: 814 – 832.

    Google Scholar 

  124. Orgel, L. E. (1965) The chemical basis of mutation.Advan. Enzymol. 27: 289 – 346.

    Google Scholar 

  125. Orgel, A. , and L. E. Orgel (1965) Induction of mutations in bacteriophage T4 with divalent manganese.J. Mol. Biol. 14: 453 – 457.

    Google Scholar 

  126. Paulson, J. R. , and J. K. Laemmli (1977) The structure of histone–depleted metaphase chromosomes.Cell12: 817 – 828.

    Google Scholar 

  127. Perry, P. , and H. J. Evans (1975) Cytological detection of mutagen–carcinogen exposure by sister chromatid exchange.Nature258: 121 – 125.

    Google Scholar 

  128. Prescott, D. M. (1970) The structure and replication of eucaryotic chromosomes, in:Advances in Cell Biology, D. M. Prescott, L. Goldstein and E. McConkey (Eds. ), Appleton-Century-Crofts, New York, pp. 57 – 117.

    Google Scholar 

  129. Radman, M. (1975) SOS repair hypothesis: Phenomenology of an inducible DNA repair which is accompanied by mutagenesis, in:Molecular Mechanisms for the Repair of DNA, Part A, P. C. Hanawalt and R. B. Setlcw (Eds. ), Plenum Press, New York, pp. 355 – 367.

    Google Scholar 

  130. Radman, M. , S. Spadari, and G. Villani (1978a) Mutagenesis and cell transformation by ultraviolet radiation: Many hypotheses for few results.Natl. Cancer Inst. Monogr. 50: 121 – 127.

    Google Scholar 

  131. Radman, M. , S. Boiteux, O. Doubleday, G. Villani, and S. Spadari (1978b) Making and correcting errors in DNA synthesis:in vitroand semi-in vivostudies of mutagenesis.J. Supramol. Struct12 (Suppl): 14.

    Google Scholar 

  132. Radman, M. , G. Villani, S. Boiteux, A. R. Kinsetta, B. W. Glickman, and S. Spadari (1979) Replication fidelity: mechanisms of mutation avoidance and mutation fixation.Cold Spring Harbor Symp. Quant. Biol. 43: 937 – 946.

    Google Scholar 

  133. Ramel, C. (1969) Genetic effects of organic mercury coirpounds. I. Cytological inviestigations onAlliumroots.Hereditas61: 208 – 230.

    Google Scholar 

  134. Ramel, C. (1972) Genetic effects, in:Mercury in the Environment, an Epidemiological and Toxicological Appraisal, L. Fridberg and I. Vostal (Eds. ),CRC Press, Boca Raton, Florida, pp. 169 – 181.

    Google Scholar 

  135. Ramel C. , and J. Magnusson (1969) Genetic effects of organic mercury compounds. II. Chromosome segregation inDrosophila melanogaster. Hereditas 61: 231 – 254.

    Google Scholar 

  136. Rapoport, J. A. (1940) Multiple linear repetitions of chromosome blocks and their evolutionary significance.J. Gen. Biol. (Moscow) 1: 235 – 270.

    Google Scholar 

  137. Richet, E. , R. Kern, M. Kobiyama, and M. Hirota (1980) Isolation of DNA-dependent ATPase I mutants of E. coli, in:Mechanistic Studies of DNA Replication and Genetic Recombination, B. Alberts (Ed. ), Academic Press, New York, pp. 606 – 608.

    Google Scholar 

  138. Reiger, R. , A. Michaelis, and M. M. Green (1968)A Gloccary of Genetics and Cytogenetics, Springer-Verlag, New York, pp. 1 – 647.

    Google Scholar 

  139. Ripley, L. S. (1975) Transversion mutagenesis in bacteriophage T4.Molec. Gen. Genet. 141: 23 – 40.

    Google Scholar 

  140. Ris, H. , and D. F. Kubai (1970) Chromosome structure.Ann. Rev. Genet. 4: 263 – 294.

    Google Scholar 

  141. Russell, L. B. (1964) Genetic and functional mosaicism in the mouse, in:Role of Chromosomes in Development, M. Locke (Ed. ), 23rd Symp. Soc. Develop, and Grcwth, Academic Press, New York.

    Google Scholar 

  142. Russell, L. B. (1976) Numerical sex-chromosome anomalies in mammals: Their spontaneous occurrence and use in mutagenesis studies, in:Chemical Mutagens-Principles and Methods for Their Detection, A. Hollaender (Ed. ), Plenum Press, New York, Vol. 4, 55 – 91.

    Google Scholar 

  143. Saffhill, R. , and P. J. Abbott (1978) Formation of 0-methylthymidine in poly (dA-dT) on methylation with N-methy-N-nitrosourea and dimethyl sulfate. Evidence that 02-methylthymidine does not miscode during DNA synthesis.Nucleic Acid Res. 5: 1971 – 1978.

    Google Scholar 

  144. Sarabhai, A. , A. D. W. Stretton, S. Brenner, and A. Bolle (1964) Colinearity of the gene with the polypeptide chain.Nature201: 13 – 17.

    Google Scholar 

  145. Sax, K. (1940) An analysis of X–ray induced chromosome aberrations inTradescantia. Genetics25: 41 – 68.

    Google Scholar 

  146. Scott, D. (1980) Molecular mechanisms of chromosome structural changes, in:Progress in Evironmental Mutagenesis, M. Alacevic (Ed. ), Elsevier/North-Holland, Amsterdam, New York, Oxford, pp. 101 – 113.

    Google Scholar 

  147. Scott, D. , and H. J. Evans (1964) On the non–requirement for deoxyribonucleic acid synthesis in the production of chromosome aberrations by 8-ethoxycaffeine.Mutation Res. 1: 146 – 156.

    Google Scholar 

  148. Scott, D. , and H. J. Evans (1967) X-ray-induced chromosomal aberrations inVicia faba: Changes in response daring the cell cycle.Mutation Res. 4: 579 – 599.

    Google Scholar 

  149. Sega, G. A. , and J. G. Owens [19787 Ethylation of DNA and protamine by ethyl methanesulfonate in the germ cells of male mice and the relevancy of these molecular targets to the induction of dominant lethals.Mutation Res. 52:87–106.

    Google Scholar 

  150. Sesnowitz-Horn, S. , and E. A. Adelberg Tl968) Proflavin treatment ofEscherichia coli: Generation of frameshift mutations.Cold Spring Harbor Symp.Quant.Biol. 33:393–402.

    Google Scholar 

  151. Shafer, D. A. (1977) Replication bypass model of sister chromatid exchanges and implications for Bloom’s syndrome and Fanconi’s anemia.Hum. Genet. 39: 177 – 190.

    Google Scholar 

  152. Sherman, C. W. , and L. A. Loeb (1977) Depurination decreases fidelity of DNA synthesisin vitro. Nature 270: 537 – 538.

    ADS  Google Scholar 

  153. Sherman, C. W. , and L. A. Loeb (1979) Effects of depurination on the fidelity of DNA synthesis.J. Mol. Biol. 128: 197 – 218.

    Google Scholar 

  154. Shugar, D. , C. P. Huber, and G. I. Birnbaum (1976) Mechanism of hydroxylamine mutagenesis Crystal structure and confirmation of 1,5-dimethyl-N-hydroxy-cytosine.Biochim. Biophys. Acta447: 274 – 284.

    Google Scholar 

  155. Singer, 0–977) Sites in nucleic acids reacting with alkylating agents of differing carcinogenicity or mutagenicity.J.Toxicol.Environm.Health2:1279–1295.

    Google Scholar 

  156. Singer, B. , H. Fraenkel-Conrat, and J. T. Kusmiereck (1978) Preparation and template activities of polynucleotides containing 0 - and 0 -alkyl uridine.Proc. Natl. Acad. Sci. USA75: 1722 – 1726.

    Google Scholar 

  157. Sirover, M. A. , and L. A. Loeb (1980) On the fidelity of DNA synthesis: Effects of steroids and intercalating agents.Chem. -Biol. Interactions30: 1 – 8.

    Google Scholar 

  158. Smith, M. D. , R. R. Green, L. S. Ripley, and J. W. Drake (1973) Thyminless mutagenesis in bacteriophage T4.Genetics74: 393 – 403.

    Google Scholar 

  159. Stark, A. A. , J. M. Essigmann, A. L. Demain, T. R. Skopek, and G. N. Wogan (1979) Aflatoxin Bl mutagenesis, DNA binding, and adduct formation inSalmonella typhimurium. Proc. Natl. Acad. Sci. USA76: 1343 – 1347.

    ADS  Google Scholar 

  160. Steffensen, D. M. (1962) A variable distance for chomosome exchange dependent on cellular activity, temperature and other conditions.Radiation Res. 16: 590.

    Google Scholar 

  161. Strauss, B. , and T. Hill (1970) The intermediate in the degradation of DNA alkylated with a monof unct ional alkylating agent.Biochim. Biophys. Acta213: 14 – 25.

    Google Scholar 

  162. Streisinger, G. , Y. Okada, J. Emrich, I. Newton, A. Tsugita, E. Terzaghi, and M. Inouye (1966) Frameshift mutations and the genetic code.Cold Spring Harbor Symp. Quant. Biol. 31: 77 – 84.

    Google Scholar 

  163. Stubblef ield, E. , and W. Wray (1971) Architecture of the Chinese hamster metaphase chromosome.Chromosoma32: 262 – 294.

    Google Scholar 

  164. Talmud, P. J. , and D. Lewis (1974a) Mutagenicity of amino-acid analogs inCoprinus lagopus.Genet. Res. 23: 47 – 61.

    Google Scholar 

  165. Talmud, P. J. , and D. Lewis (1974b) Mutagenicity of amino-acid analogs in eukaryotes.Nature249: 563 – 564.

    Google Scholar 

  166. Tessman, I. (1962) The induction of large deletions by nitrous acid.J. Mol. Biol. 5: 442 – 445.

    Google Scholar 

  167. Tessman, J. , R. K. Poddar, and S. Kumar (1964) Identification of the altered bases in mutant single stranded DNA. I.In vitromutagenesis by hydroxylamine, ethyl methanesulfonate and nitrous acid. J. Mol. Biol. 9: 352 – 363.

    Google Scholar 

  168. Therman, E. (1980)Human Chromosomes, Structure, Behavior, Effects, Springe-Verlag, New York, pp. 1 – 235.

    Google Scholar 

  169. Thoma, F. , and T. Koller (1981) Unravelled nucleosomes, nucleosome beads and higher order structures of chromatin: influence of non–histone components and histone Hi.J. Mol. Biol. 149: 709 – 733.

    Google Scholar 

  170. Thoma, R. , T. Koller, and A. Klug (1979) Involvement of histone Hi in the organization of the nucleosome and of the salt-dependent superstructures of chromatin.J. Cell. Biol. 83: 403 – 427.

    Google Scholar 

  171. Topal, M. D. , and J. R. Fresco (1967) Complementary base pairing and the origin of substitution mutations.Nature263: 285 – 289.

    Google Scholar 

  172. Van der Schans, G. P. (1969) On the production of breaks in DNA by gamma-rays.Int. J. Radiat. Biol. 16: 58.

    Google Scholar 

  173. Vig, B. K. , and R. Lewis (1978) Genetic toxicology of bleomycin.Mutation Res. 55: 121 – 145.

    Google Scholar 

  174. Vogel, F. , and A. G. Motulsky (1979)Human Genetics: Problems and Approaches, Springer-Verlag, Heidelberg, New York, pp. 1 – 700.

    Google Scholar 

  175. de Vries, H. (1901)Die Mutationstheorie, Bd. 1, Veit & Conp. , Leipzig.

    Google Scholar 

  176. Waring, M. J. (1965) Complex formation between ethidium bromide and nucleic acids.J. Mol. Biol. 13: 269 – 282.

    Google Scholar 

  177. Watson, J. D. , and F. H. C. Crick (1953) The structure ofCold Spring Harbor Symp. Quant. Biol. 18: 123 – 131.

    Google Scholar 

  178. Weigle, J. J. (1953) Induction of mutations in bacterial virus.Proc. Natl. Acad. Sci. USA39: 628 – 636.

    ADS  Google Scholar 

  179. Weigle, J. J. , and R. Dulbecco (1953) Induction of mutations in bacteriophage T3 by ultraviolet light.Experientia9: 372 – 373.

    Google Scholar 

  180. Weinstein, I. B. , and D. Grunberger (1974) Structural and functional changes in nucleic acids modified by chemical carcinogens, in:Chemical Carcinogenesis, Part A, P. 0. P. T1 so and J. A. DiPaolo (Eds. ), Marcel Dekker, New York, pp. 217 – 235.

    Google Scholar 

  181. White, M. J. D. (1973)The Chromosomes, 6th Edition, Chapman and Hall, London.

    Google Scholar 

  182. Whitney, J. B. Ill, and M. L. Lamoreaux (1981) Transposable elements controlling genetic instabilities in mammals.J. Hered. 73: 12 – 18.

    Google Scholar 

  183. Wickner, S. , and J. Hurwitz (1974) Conversion of (f) X174 viral DNA to double-stranded form by purifiedEscherichia coliproteins.Proc. Natl. Acad. Sci. USA71: 4120 – 1424.

    Google Scholar 

  184. Witkin, E. M. (1967) Mutation-proof and mutation-prone modes of survival in derivatives of Escherichia coli B differing in sensitivity to ultraviolet light.Brookhaven Symp. Biol. 20: 17 – 55.

    Google Scholar 

  185. Witkowski, R. , and F. H. Herrmann (1976)Einführung in die Klinische Genetik, Vieweg, Braunschweig, pp. 1 – 218.

    Google Scholar 

  186. Wolff, S. (1977) Sister chromatid exchange.Ann. Rev. Genet. 11: 183 – 201.

    Google Scholar 

  187. Wolff, S. , and P. Perry (1975) Insights on chromosome structure from sister chromatid exchange ratios and the lack of both isolabelling and heterolabelling as determined by the FPG technique.Exp. Cell Res. 93: 23 – 30.

    Google Scholar 

  188. Wolff, S. , K. C. Atwood, M. L. Randolph, and H. E. Luippold (1958) Factors limiting the number of radiation induced chromosome exchanges. I. Distance: Evidence from noninteraction of X-ray and neutron-induced breaks.J. Biophys. Biochem. Cytol. 4: 365 – 372.

    Google Scholar 

  189. Yunis, J. J. (1976) High resolution of human chromosomes.Science191: 1268 – 1270.

    Google Scholar 

  190. Yunis, J. J. (1980) Nomenclature for high resolution human chromosomes.Cancer Genet. Cytogenet. 2: 221 – 229.

    Google Scholar 

  191. Zampieri, A. , and J. Greenberg (1965) Mutagenesis by acridine orange and proflavin inEscherichia coli strains S. Mutation Res. 2: 552 – 556.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Würgler, F.E. (1984). Theoretical Basis of Mutagenesis. In: Chu, E.H.Y., Generoso, W.M. (eds) Mutation, Cancer, and Malformation. Environmental Science Research, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2399-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2399-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9463-4

  • Online ISBN: 978-1-4613-2399-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics