Basic Imaging Properties of Radiographic Systems and Their Measurement

  • Kunio Doi


The physical image quality of radiographs is known to be affected by at least three fundamental factors, namely, contrast, resolution (or sharpness), and noise (or radiographic mottle).(1,2) The contrast of a radiograph, commonly referred to as radiographic contrast, is related to the film contrast (or gradient), radiation contrast, and primary (or scatter) fraction. The gradient is usually derived from the characteristic curve (or H and D curve) of the screen-film system on which the radiographic image is recorded. The H and D curve is a basic imaging characteristic in radiographic systems and has been measured by a technique called sensitometry.


Root Mean Square Focal Spot Modulation Transfer Function Line Spread Function Slit Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Rossmann, Image quality and patient exposure, Curr. Probl. Radiol 2, 1–34 (1972).Google Scholar
  2. 2.
    K. Doi, K. Rossmann, and A. G. Haus, Image quality and patient exposure in diagnostic radiology, Phot. Sci. Eng. 21, 269–277 (1977).Google Scholar
  3. 3.
    K. Rossmann, Modulation transfer function of radiographic systems using fluorescent screens, J. Opt. Soc. Am. 52, 774–777 (1962).CrossRefGoogle Scholar
  4. 4.
    R. H. Morgan, L. M. Bates, U. V. Gopala Rao, and A. Marinaro, Frequency response characteristics of X-ray films and screens, Am. J. Roentgenol. 92, 426–440 (1964).Google Scholar
  5. 5.
    M. Hofert, Messung der Kontrastubertragungsfunktion von Röntgenverstärkerfolien, Acta Radiol. Diagn. 1, 1111–1122 (1963).Google Scholar
  6. 6.
    K. Doi, Measurement of optical transfer functions of intensifying screens, Oyo Buturi 33, 50–52 (1964).Google Scholar
  7. 7.
    K. Rossmann, Spatial fluctuations of X-ray quanta and the recording of radiographic mottle, Am. J. Roentgenol. 90, 863–869 (1963).Google Scholar
  8. 8.
    K. Rossmann, Recording of X-ray quantum fluctuations in radiographs, J. Opt. Soc. Am. 52, 1162–1164 (1962).CrossRefGoogle Scholar
  9. 9.
    K. Doi, Wiener spectrum analysis of quantum statistical fluctuation and other noise sources in radiography, in Television in Diagnostic Radiology(R. D. Moseley and J. H. Rust, eds.), pp. 313–333, Aesculapius, Birmingham (1969).Google Scholar
  10. 10.
    H. M. Cleare, personal communication.Google Scholar
  11. 11.
    A. G. Haus and K. Rossmann, X-ray sensitometer for screen-film systems used in medical radiography, Radiology 94, 673–678 (1970).Google Scholar
  12. 12.
    J. Hale and P. Block, Step-wedge sensitometry, Radiology 128, 820–821 (1978).Google Scholar
  13. 13.
    Sensitometric Properties of X-Ray Films, Radiography Markets Division, Eastman Kodak, Rochester, N.Y. (1979).Google Scholar
  14. 14.
    D. R. Bednarek and S. Rudin, Comparison of modified boot-strap and conventional sensitometry in medical radiography, Proc. SPIE 233, 2–6 (1980).Google Scholar
  15. 15.
    L. K. Wagner, A. G. Haus, G. T. Barnes, J. A. Bencomo, and S. R. Amtey, Comparison of methods used to measure the characteristic curve of radiographic screen/film systems, Proc. SPIE 233, 7–10 (1980).Google Scholar
  16. 16.
    M. V. Yester, G. T. Barnes, and M. A. King, Peak kilo voltage boot-strap sensitometry, Radiology 136, 785–786 (1980).Google Scholar
  17. 17.
    G. T. Barnes, The use of bar-pattern test objects in assessing the resolution of film/screen systems, in Physics of Medical Imaging: Recording System Measurements and Techniques(A. G. Haus, ed.), pp. 138–151, American Association of Physicists in Medicine, American Institute of Physics, New York (1979).Google Scholar
  18. 18.
    A. G. Haus, K. Rossmann, C. J. Vyborny, P. B. Hoffer, and K. Doi, Sensitometry in diagnostic radiology, radiation therapy, and nuclear medicine, J. Appl. Photo. Eng. 3, 114–124 (1977).Google Scholar
  19. 19.
    G. Holje and K. Doi, Sensitivity, sensitometry, resolution, and noise characteristics of new radiographic screen-film systems, in HHS Publication FDA 82–8187, pp. 39–77, Rockville, Maryland (1982).Google Scholar
  20. 20.
    C. E. K. Mees and T. H. James, The Theory of the Photographic Process, pp. 409–436, Macmillan, New York (1966).Google Scholar
  21. 21.
    C. J. Vyborny, The speed of radiographic screen-film systems as a function of X-ray energy and its effect on radiographic contrast, Ph.D. dissertation, University of Chicago, Chicago, Illinois (1976).Google Scholar
  22. 22.
    C. J. Vyborny, H and D curves of screen-film systems: Factors affecting their dependence on X-ray energy, Med. Phys. 6, 39–44 (1979).CrossRefGoogle Scholar
  23. 23.
    G. Sanderson and G. J. Johnston, Effect of development temperature changes in an automatic processor, Proc. SPIE 70, 26–32 (1975).Google Scholar
  24. 24.
    H. P. Chan and K. Doi, Determination of radiographic screen-film system characteristic curve and its gradient by use of a curve-smoothing technique, Med. Phys. 5, 443–447 (1978).CrossRefGoogle Scholar
  25. 25.
    B. Carnahan, H. A. Luther, and J. O. Wilkes, Applied Numerical Methods, p. 129, Wiley, New York (1969).Google Scholar
  26. 26.
    T. R. McCalla, Introduction to Numerical Methods and FORTRAN IV Programming, p. 239, Wiley, New York (1967).Google Scholar
  27. 27.
    C. E. Metz and K. Doi, Transfer function analysis of radiographic imaging systems, Phys. Med. Biol. 24, 1079–1106 (1979).CrossRefGoogle Scholar
  28. 28.
    W. K. Pratt, Digital Image Processing, Wiley, New York (1978).Google Scholar
  29. 29.
    K. G. Beauchamp and C. K. Yuen, Digital Methods for Signal Analysis, George Allen and Unwin, London (1979).Google Scholar
  30. 30.
    J. C. Dainty and R. Shaw, Image Science, Academic, New York (1974).Google Scholar
  31. 31.
    A. Papoulis, Probability, Random Variables, and Stochastic Process, McGraw-Hill, New York (1965).Google Scholar
  32. 32.
    K. Doi and K. Rossmann, Measurements of optical and noise properties of screen-film systems in radiography, Proc. SPIE 56, 45–53 (1975).Google Scholar
  33. 33.
    K. Doi, G. Holje, L. N. Loo, H. P. Chan, J. M. Sandrik, R. J. Jennings, and R. F. Wagner, MTFs and Wiener spectra of radiographic screen-film systems, in HHS Publication FDA 82–8187, pp. 1–77 (1982).Google Scholar
  34. 34.
    R. F. Wagner, K. E. Weaver, E. W. Denny, and R. G. Bostrom, Toward a unified view of radiological imaging systems, Part 1: Noiseless images, Med. Phys. 1, 11–24 (1974).CrossRefGoogle Scholar
  35. 35.
    K. Doi, Optical transfer functions of the focal spot of X-ray tubes, Am. J. Roentgenol. 94, 712–718 (1965).Google Scholar
  36. 36.
    A. Bouwers, The practical value of contrast transfer in radiology, in Diagnostic Radiologic Instrumentation: Modulation Transfer Function, pp. 3–13, C. C. Thomas, Springfield, Illinois (1965).Google Scholar
  37. 37.
    K. Rossmann, Image-forming quality of radiographic screen-film systems: the line spread function, Am. J. Roentgenol. 90, 178–183 (1963).Google Scholar
  38. 38.
    C. H. Dyer and E. L. Criscuolo, Measurement of spatial-frequency response of certain film- screen combinations to 10-MeV X rays, Materials Evaluation631–636 (1966).Google Scholar
  39. 39.
    J. W. Coltman, The specification of imaging properties by response to sine wave input, J. Opt. Soc. Am. 44, 468–471 (1954).CrossRefGoogle Scholar
  40. 40.
    G. Lubberts, Some aspects of the square-wave response function of radiographic screen- film systems, Am. J. Roentgenol. 106, 650–654 (1969).Google Scholar
  41. 41.
    R. P. Rossi, W. R. Hendee, and C. R. Ahrens, An evaluation of rare-earth screen/film combinations, Radiology 121, 465–471 (1976).Google Scholar
  42. 42.
    T. W. Ovitt, R. Moore, and K. Amplatz, The evaluation of high-speed screen-film combinations in angiography, Radiology 121, 449–455 (1975).Google Scholar
  43. 43.
    J. P. Weiss, Notes on determining modulation transfer data for X-ray film-screen combinations, in Image Analysis and Evaluation(R. Shaw, ed.), pp. 527–531, SPSE (1977).Google Scholar
  44. 44.
    R. A. Schmidt, The use of lead test patterns for MTF measurement of radiographic screen/film systems, M.Sc. thesis, University of Chicago, Chicago, Illinois (1982).Google Scholar
  45. 45.
    S. Sakuma, Y. Ayakawa, Y. Okumura, and Y. Maekoshi, Determination of focal-spot characteristics of microfocus X-ray tubes, Invest. Radiol. 4, 335–339 (1969).CrossRefGoogle Scholar
  46. 46.
    G. Sanderson and H. M. Cleare, MTF of screen-film systems: the influence of screens and crossover, Photo. Sci. Eng. 18, 251–253 (1974).Google Scholar
  47. 47.
    G. U. V. Rao and P. P. Fatouros, Evaluation of a new X-ray film with reduced crossover, Med. Phys. 6, 226–228 (1979).CrossRefGoogle Scholar
  48. 48.
    K. Doi, L. N. Loo, T. M. Anderson, and P. H. Frank, Effect of crossover exposure on radiographic-image quality of screen-film systems, Radiology 139, 707–714 (1981).Google Scholar
  49. 49.
    P. C. Bunch, Imaging characteristics of screen-film systems using oblique incidence conditions, Ph.D. dissertation, University of Chicago, (1975).Google Scholar
  50. 50.
    R. E. Wayrynen, R. S. Holland, and R. P. Schwenker, Film-screen sharpness in complex- motion tomography, Invest. Radiol. 12, 195–198 (1977).CrossRefGoogle Scholar
  51. 51.
    Y. Higashida, P. H. Frank, and K. Doi, Basic imaging properties of single-screen/single-film combinations and their clinical application in diagnostic radiology, Radiology 149, 571–577 (1983).Google Scholar
  52. 52.
    C. J. Vyborny, C. E. Metz, K. Doi, and A. G. Haus, Calculated characteristic X-ray reabsorption in radiographic screens, J. Appl. Photo. Eng. 4, 172–177 (1978).Google Scholar
  53. 53.
    B. A. Arnold and B. E. Bjarngard, The effect of phosphor K X rays on the MTF of rare- earth screens, Med. Phys. 6, 500–503 (1979).CrossRefGoogle Scholar
  54. 54.
    G. Lubberts, The line spread function and the modulation transfer function of X-ray fluorescent screen-film systems—Problems with double-coated films, Am. J. Roentgenol. 105, 909–917 (1969).Google Scholar
  55. 55.
    K. Rossmann and G. Sanderson, Validity of the modulation transfer function of radiographic systems measured by the slit method, Phys. Med. Biol. 13, 259–268 (1968).CrossRefGoogle Scholar
  56. 56.
    K. Doi, Computer simulation study of screen-film system nonlinearity in fine-detail imaging, Phys. Med. Biol. 18, 863–877 (1973).CrossRefGoogle Scholar
  57. 57.
    K. Strubler, K. Doi, and K. Rossmann, Density dependence of the line spread function of screen-film systems, Phys. Med. Biol. 18, 219–225 (1973).CrossRefGoogle Scholar
  58. 58.
    K. Rossmann, G. Lubberts, and H. M. Cleare, Measurement of the line spread function of radiographic systems containing fluorescent screens, J. Opt. Soc. Am. 54, 187–190 (1964).CrossRefGoogle Scholar
  59. 59.
    G. Sanderson, Erroneous perturbations of the modulation transfer function derived from the line spread function, Phys. Med. Biol. 13, 661–663 (1968).CrossRefGoogle Scholar
  60. K. Doi, K. Strubler, and K. Rossmann, Truncation errors in calculating the MTF of radiographic screen-film systems from the line spread function, Phys. Med. Biol. 17, 241–250 (1972).CrossRefGoogle Scholar
  61. 61.
    C. E. Metz, K. Strubler, and K. Rossmann, Choice of line spread function sampling distance for computing the MTF of radiographic screen-film systems, Phys. Med. Biol. 17, 638–647 (1972).CrossRefGoogle Scholar
  62. 62.
    B. A. Arnold, H. Eisenberg, and B. E. Bjarngard, The LSF and MTF of rare-earth oxysulfide intensifying screen, Radiology 121, 473–477 (1976).Google Scholar
  63. 63.
    K. Doi, G. Holje, L. N. Loo, and H. P. Chan, Evaluation of resolution properties of radiographic screen-film systems, HHS Publication(FDA) 80-8126, pp. 162-180, Rockville, Maryland (1980).Google Scholar
  64. 64.
    K. Doi and K. Sayanagi, Role of optical transfer function for optimum magnification in enlargement radiography, Jap. J. Appl. Phys. 9, 834–839 (1970).CrossRefGoogle Scholar
  65. 65.
    S. Uchida, Fourier analysis of X-ray tube focal-intensity distribution along the beam through optical system, Oyo Buturi 34, 97–107 (1965).Google Scholar
  66. 66.
    H. Kanamori, Optical transfer function of X-ray tube focal-spot sizes for various tube currents, Jap. J. Appl. Phys. 4, 227–228 (1965).CrossRefGoogle Scholar
  67. 67.
    E. Takenaka, K. Kinoshita, and R. Nakajima, Modulation transfer function of the intensity distribution of the roentgen focal spot, Acta Radiol (Ther) 7, 263–272 (1968).CrossRefGoogle Scholar
  68. 68.
    G. U. V. Rao and L. M. Bates, The modulation transfer functions of X-ray focal spots, Phys. Med. Biol. 14, 93–106 (1969).CrossRefGoogle Scholar
  69. 69.
    K. Kiviniitty, Modulation transfer function of the focal spot of X-ray tubes, Comm. Phys. Math. 40, 9–39 (1970).Google Scholar
  70. 70.
    K. Doi, L. N. Loo, and H. P. Chan, X-ray tube focal-spot sizes: Comprehensive studies of their measurement and effect of measured size in angiography, Radiology 144, 383–393 (1982).Google Scholar
  71. 71.
    A. Elsas, E. Fenner, R. Friedel, and H. Schnitger, Geometrische Unscharfe und Inten- sitatsverteilung in einen Rontgenaufnahmefeld, Fortschr. Rontgenstr. 115, 822–827 (1971).CrossRefGoogle Scholar
  72. 72.
    P. Brubacher and B. M. Moores, The modulation transfer function of the focal spot with a twin-peaked intensity distribution, Radiology 107, 635–640 (1973).Google Scholar
  73. 73.
    A. E. Burgess, Focal spots: I. MTF separability, Invest. Radiol 12, 36–43 (1977).CrossRefGoogle Scholar
  74. 74.
    A. E. Burgess, Focal spots: II. Models, Invest. Radiol 12, 44–53 (1977).Google Scholar
  75. 75.
    A. E. Burgess, Focal spots: III. Field characteristics, Invest. Radiol 12, 54–61 (1977).Google Scholar
  76. 76.
    O. Mattsson, Focal-spot variations with exposure data—important factors in daily routine, Acta. Radiol (Diagnosis) 7, 161–169 (1968).Google Scholar
  77. 77.
    B. M. Moores and W. Roeck, The field characteristics of the focal spot in the radiographic imaging process, Invest. Radiol 8, 53–57 (1973).CrossRefGoogle Scholar
  78. 78.
    D. J. Klein, R. T. Bergeron, and H. Bernstein, Wide-field resolution in radiography, Radiology 122, 811–815 (1977).Google Scholar
  79. 79.
    K. Doi, Field characteristics of geometric unsharpness due to the X-ray tube focal spot, Med. Phys. 4, 15–20 (1977).CrossRefGoogle Scholar
  80. 80.
    P. Spiegler and W. C. Breckinridge, Imaging of focal spot by means of the star test pattern, Radiology 102, 679–684 (1972).Google Scholar
  81. 81.
    H. Bernstein, R. T. Bergeron, and D. J. Klein, The relationship of the radiant intensity distribution of focal spots to resolution, Radiology 111, 427–431 (1974).Google Scholar
  82. 82.
    A. E. Burgess, Interpretation of star test pattern images, Med. Phys. 4, 1–8 (1977).CrossRefGoogle Scholar
  83. 83.
    A. E. Burgess, Effect of asymmetric focal spots in angiography, Med. Phys. 4, 21–25 (1977).CrossRefGoogle Scholar
  84. 84.
    J. E. Gray, M. P. Capp, and F. R. Whitehead, An improved technique for X-ray image evaluation, Invest. Radiol 9, 252–261 (1974).CrossRefGoogle Scholar
  85. 85.
    K. Doi, B. Fromes, and K. Rossmann, New device for accurate measurement of the X-ray intensity distribution of X-ray tube focal spots, Med. Phys. 2, 268–273 (1975).CrossRefGoogle Scholar
  86. 86.
    G. Groh, E. Klotz, and H. Weiss, Simple and fast method for the presentation of the two- dimensional modulation transfer function of X-ray systems, Appl Opt. 12, 1693–1697 (1973).CrossRefGoogle Scholar
  87. 87.
    K. Doi, Advantages of magnification radiography, in Breast Carcinoma: The Radiologist’s Expanded Role(W. W. Logan, ed.), pp. 83–92, Wiley, New York (1977).Google Scholar
  88. 88.
    K. Doi, H. K. Genant, and K. Rossmann, Comparison of image quality obtained with optical and radiographic magnification techniques in fine-detail skeletal radiography: effect of object thickness, Radiology 118, 189–195 (1976).Google Scholar
  89. 89.
    M. Pfeiler and K. Dietz, Microfocus X-ray tubes and the image quality obtained with geometric enlargement—comments on future developments of X-ray tubes, in Small Vessel Angiography(S. K. Hilal, S. Baum, J. J. Bookstein, R. H. Greenspan, M. P. Judkins, E. J. Potshen, K. Rossmann, and H. H. Ter-Pogossian, eds.), pp. 36–47, C. V. Mosby, St. Louis (1973).Google Scholar
  90. 90.
    H. Eisenberg, M. Braun, B. Arnold, W. Holland, and R. Gould, Evaluation of microfocal-spot X-ray tubes and rare-earth oxysulfide intensifying screens in magnification radiography, Proc. SPIE 56, 184–190 (1976).Google Scholar
  91. 91.
    E. A. Sickles, K. Doi, and H. K. Genant, Magnification film mammography: studies of image quality and clinical evaluation, Radiology 125, 69–76 (1977).Google Scholar
  92. 92.
    H. Imhof and K. Doi, Application of radiographic magnification technique with an ultra- high-speed rare-earth screen-film system to oral cholecystography, Radiology 129, 173–178 (1978).Google Scholar
  93. 93.
    A. G. Haus, K. Doi, J. R. Chiles, K. Rossmann, and R. A. Mintzer, The effect of geometric and recording system unsharpness in mammography, Invest. Radiol. 10, 43–52 (1975).CrossRefGoogle Scholar
  94. 94.
    H. K. Genant and K. Doi, High-resolution skeletal radiography: image quality and clinical applications, Curr. Probl. Diag. Radiol. 7, 1–62 (1978).Google Scholar
  95. 95.
    International Commission of Radiological Units and Measurements, Methods of Evaluating Radiological Equipment and Materials: recommendations of the ICRU, NBS Handbook 89, GPO Washington, D.C. (1962).Google Scholar
  96. 96.
    National Electrical Manufacturers’ Association, Measurement of dimensions of focal spots of diagnostic X-ray tubes, NEMA Standard 9-11-1974, Publication No. XR5-1974, New York.Google Scholar
  97. 97.
    A. H. G. Kuntke, On the determination of roentgen tube focal-spot sizes by pinhole camera roentgenography, Acta. Radiol. 47, 55–64 (1957).Google Scholar
  98. 98.
    B. A. Arnold, B. E. Bjarngard, and J. C. Klopping, A modified pinhole camera method for investigation of X-ray tube focal spots, Phys. Med. Biol. 18, 540–549 (1973).CrossRefGoogle Scholar
  99. 99.
    International Electrical Commission: Characteristic of focal spots in diagnostic X-ray tube assemblies for medical use, draft proposal (1980).Google Scholar
  100. 100.
    E. Zieler and H. Pulvermacher, Evaluation of size and MTF measurements on X-ray sources, presented at the 14th International Congress of Radiology, October 23–29, Rio de Janeiro (1977).Google Scholar
  101. 101.
    K. Doi and K. Rossmann, Evaluation of focal-spot distribution by RMS value and its effect on blood vessel imaging in angiography, Proc. SPIE 47, 207–213 (1975).Google Scholar
  102. 102.
    M. Braun, W. Roeck, and G. Gillian, X-ray tube performance characteristics and their effect on radiologic-image quality, Proc. SPIE 152, 94–103 (1978).Google Scholar
  103. 103.
    M. Braun, Focal spots in the future of mammography, in Reduced-Dose Mammography(W. W. Logan and E. P. Muntz, eds.), pp. 195–209, Masson, New York (1979).Google Scholar
  104. 104.
    G. U. V. Rao and L. M. Bates, Effective dimensions of roentgen tube focal spots based on measurements of the modulation transfer function, Acta. Radiol. (Ther) 9, 362–368 (1970).CrossRefGoogle Scholar
  105. 105.
    J. J. Bookstein and W. Steck, Effective focal-spot size, Radiology 98, 31–33 (1971).Google Scholar
  106. 106.
    G. U. V. Rao, A new method to determine the focal-spot size of X-ray tubes, Am. J. Roentgenol. 111, 628–633 (1971).Google Scholar
  107. 107.
    P. J. Friedman and R. H. Greenspan, Observation on magnification radiography: Visualization of small blood vessels and determination of focal-spot size, Radiology 92, 549–557 (1969).Google Scholar
  108. 108.
    Nuclear Associates, Inc., Carle Place, New York, Catalog G-1.Google Scholar
  109. 109.
    S. C. Prasad, W. R. Hendee, and P. L. Carlson, Intensity distribution, modulation transfer function, and the effective dimension of a line-focus X-ray focal spot, Med. Phys. 3, 217–223 (1976).CrossRefGoogle Scholar
  110. 110.
    S. C. Prasad and W. R. Hendee, Effective size of the transverse dimension of X-ray tube focal spots, Med. Phys. 4, 235–238 (1977).CrossRefGoogle Scholar
  111. 111.
    K. Doi and K. Rossmann, Computer simulation of small blood vessel imaging in magnification radiography, in Small Vessel Angiography(S. K. Hilal, S. Baum, J. J. Bookstein, M. P. Judkins, E. J. Potshen, K. Rossmann, and H. H. Ter-Pogossian, eds.), pp. 6–12, C. V. Mosby, St. Louis (1973).Google Scholar
  112. 112.
    S. Wende, E. Zieler, and N. Nakayama, Cerebral Magnification Angiography, Springer- Verlag, Berlin (1974).Google Scholar
  113. 113.
    T. Sandor, D. F. Adams, P. G. Herman, H. Eisenberg, and H. L. Abrams, The potential of magnification angiography, Am. J. Roentgenol. 120, 916–921 (1974).Google Scholar
  114. 114.
    K. Doi and K. Rossmann, Effect of focal-spot distribution on blood vessel imaging in magnification angiography, Radiology 114, 435–441 (1975).Google Scholar
  115. 115.
    K. Doi, L. N. Loo, and K. Rossmann, Validity of computer simulation of blood vessel imaging in angiography, Med. Phys. 4, 400–403 (1977).CrossRefGoogle Scholar
  116. 116.
    E. N. C. Milne, Characterizing focal-spot performance, Radiology 111, 483–486 (1974).Google Scholar
  117. 117.
    R. T. Bergeron, Manufacturers’ designation of diagnostic X-ray tube focal-spot size: a time for candor, Radiology 111, 487–488 (1974).Google Scholar
  118. 118.
    H. Bernstein, R. T. Bergeron, and D. J. Klein, Routine evaluation of focal spots, Radiology 111, 421–425 (1974).Google Scholar
  119. 119.
    W. R. Hendee and E. L. Chaney, X-ray focal spots: practical considerations, Appl. Radiol. 3, 25–29 (1974).Google Scholar
  120. 120.
    G. T. Barnes, Radiographic mottle: A comprehensive theory, Med. Phys. 9, 656–667 (1982).CrossRefGoogle Scholar
  121. 121.
    K. Doi and H. Imhof, Noise reduction by radiographic magnification, Radiology 122,479–487 (1977).Google Scholar
  122. 122.
    E. A. Sickles, Microfocal-spot magnification mammography using xeroradiographic and screen-film recording systems, Radiology 131, 599–607 (1979).Google Scholar
  123. 123.
    K. Rossmann, J. R. Williams, and D. J. Goodenough, Evaluation of radiologic-image quality, Proc. SPIE 35, 75–81 (1973).Google Scholar
  124. 124.
    L. N. Loo, Correlation between visual- and physical-image quality indices: Detectability of nylon bead images in radiographic noise, Ph.D. dissertation, University of Chicago (1982).Google Scholar
  125. 125.
    R. F. Wagner, Decision theory and the detail signal-to-noise ratio of Otto Schade, Photo. Sci. Eng. 22, 41–46 (1978).Google Scholar
  126. 126.
    A. E. Burgess, R. F. Wagner, and R. J. Jennings, Human signal detection performance for noisy medical images, Proc. IEEE (to be published).Google Scholar
  127. 127.
    M. Ishida, K. Doi, L. N. Loo, C. E. Metz, and J. L. Lehr, Digital-imaging processing: effect on the detectabilities of simulated low-contrast radiographic patterns, Radiology 150, 569–575 (1984).Google Scholar
  128. 128.
    R. F. Wagner, Toward a unified view of radiological-imaging systems. Part II: Noisy images, Med. Phys. 4, 279–296 (1977).CrossRefGoogle Scholar
  129. 129.
    G. T. Barnes, The dependence of radiographic mottle on beam quality, Am. J. Roentgenol. 127, 819–824 (1976).Google Scholar
  130. 130.
    R. F. Wagner and K. E. Weaver, Noise measurements on rare-earth intensifying screen systems, Proc. SPIE 56, 198–207 (1975).Google Scholar
  131. 131.
    R. F. Wagner, Fast Fourier digital quantum mottle analysis with application to rare-earth intensifying screen systems, Med. Phys. 4, 157–162 (1977).CrossRefGoogle Scholar
  132. 132.
    R. A. Buchanan, S. I. Finkelstein, and K. A. Wickersheim, X-ray exposure reduction using rare-earth oxysulfide intensifying screens, Radiology 105, 185–190 (1972).Google Scholar
  133. 133.
    R. F. Wagner and K. E. Weaver, Prospects for X-ray exposure reduction using rare-earth intensifying screens, Radiology 118, 183–188 (1976).Google Scholar
  134. 134.
    A. L. N. Stevels, New phosphors for X-ray screens, Med. Mundi 20, 12–22 (1975).Google Scholar
  135. 135.
    H. M. Cleare, H. R. Splettstossor, and H. F. Seemann, An experimental study of the mottle produced by X-ray intensifying screens, Am. J. Roentgenol. 188, 168–174 (1962).Google Scholar
  136. 136.
    G. Lubberts, Random noise produced by X-ray fluorescent screens, J. Opt. Soc. Am. 58, 1475–1483 (1968).CrossRefGoogle Scholar
  137. 137.
    R. E. Shuping and P. F. Judy, Energy absorbed in calcium tungstate X-ray screens, Med. Phys. 4, 239–243 (1977).CrossRefGoogle Scholar
  138. 138.
    C. J. Vyborny, L. N. Loo, and K. Doi, The energy-dependent behavior of noise Wiener spectra in their low-frequency limits: comparison with simple theory, Radiology 144, 619–622 (1982).Google Scholar
  139. 139.
    G. Holje, An investigation of imaging properties of radiographic screen-film systems, Ph.D. dissertation, the University of Lund, Lund, Sweden (1983).Google Scholar
  140. 140.
    H. P. Chan and K. Doi, Energy and angular dependence of X-ray absorption in screen-film system, Phys. Med. Biol. 28, 565–579 (1983).CrossRefGoogle Scholar
  141. 141.
    C. E. Metz and C. J. Vyborny, Wiener spectral effects of spatial correlation between the sites of characteristic X-ray emission and reabsorption in radiographic screen-film systems, Phys. Med. Biol. 28, 547–564 (1983).CrossRefGoogle Scholar
  142. 142.
    R. K. Swank, Absorption and noise in X-ray phosphors, J. Appl. Phys. 44, 4199–4203 (1973).CrossRefGoogle Scholar
  143. 143.
    C. E. Dick and J. W. Motz, Image information transfer properties of X-ray fluorescent screens, Med. Phys. 8, 337–346 (1981).CrossRefGoogle Scholar
  144. 144.
    C. E. Dick, J. W. Motz, and H. Roehrig, New method for the experimental determination of the detective quantum efficiency of X-ray screens, Proc. SPIE 233, 11–15 (1980).Google Scholar
  145. 145.
    K. Doi, Scans in measuring Wiener spectra for photographic granularity, Jap. J. Appl. Phys. 5, 1213–1216 (1966).CrossRefGoogle Scholar
  146. 146.
    J. H. Altman, Sensitometry of black-and-white materials, in The Theory of the Photographic Process, 4th ed. (T. H. James, ed.), p. 181, MacMillan, New York (1977).Google Scholar
  147. 147.
    R. C. Jones, Quantum efficiency of detectors for visible and infrared radiation, in Advances in Electronics and Electron Products, XI (L. Marton, ed.), pp. 83–183. Academic, New York (1959).Google Scholar
  148. 148.
    R. Shaw, Evaluating the efficiency of imaging processes, Rep. Prog. Phys. 41, 1103–1115 (1978).CrossRefGoogle Scholar
  149. 149.
    J. M. Sandrik and R. F. Wagner, Absolute measures of physical-image quality: measurement and application to radiographic magnification, Med. Phys. 9, 540–549 (1982).CrossRefGoogle Scholar
  150. 150.
    J. M. Sandrik and R. F. Wagner, Radiographic screen-film noise power spectrum: variation with microdensitometer slit length, Appl. Opt. 20, 2795–2798 (1981).CrossRefGoogle Scholar
  151. 151.
    M. DeBelder and J. DeKerf, The determination of the Wiener spectrum of photographic emulsion layers with digital methods, Photo. Sci. Eng. 11, 373–378 (1967).Google Scholar
  152. 152.
    J M. Sandrik, R. F. Wagner, and K. E. Hanson, Radiographic screen-film noise power spectrum: calibration and intercomparison, Appl. Opt. 21, 3597–3602 (1982).CrossRefGoogle Scholar
  153. 153.
    R. F. Wagner and J. M. Sandrik, An introduction to digital noise analysis, in The Physics of Medical Images: Recording System Measurements and Techniques, pp. 524–545 ( A. G. Haus, ed.), American Institute of Physics, New York (1979).Google Scholar
  154. 154.
    K. Doi, Y. Kodera, L. N. Loo, H. P. Chan, and Y. Higashida, MTFs and Wiener spectra of radiographic screen-film system, vol. II, HHS Publication (FDA) (to be published).Google Scholar
  155. 155.
    C. J. Vyborny, C. E. Metz, and K. Doi, Large-area contrast prediction in screen-film systems, Proc. SPIE 23, 30–36 (1980).Google Scholar
  156. 156.
    H. P. Chan, Investigation of physical characteristics of scattered radiation and performance of antiscatter grids in diagnostic radiology: Monte Carlo simulation studies, Ph.D. dissertation, University of Chicago (1981).Google Scholar
  157. 157.
    H. P. Chan and K. Doi, Physical characteristics of scattered radiation and performance of antiscattered grids in diagnostic radiology, Radio Graphics 2, 378–406 (1982).Google Scholar
  158. 158.
    H. P. Chan and K. Doi, The validity of Monte Carlo simulation studies of scattered radiation in diagnostic radiology, Phys. Med. Biol. 28, 109–129 (1983).CrossRefGoogle Scholar
  159. 159.
    J. A. Sorenson and J. A. Nelson, Investigation of moving-slit radiography, Radiology 120, 705–711 (1976).Google Scholar
  160. 160.
    G. T. Barnes, I. A. Brezovich, and D. M. Witten, Scanning multiple-slit assembly: A practical and efficient device to reduce scatter, Am. J. Roentgenol. 129, 497–501 (1977).Google Scholar
  161. 161.
    H. P. Chan and K. Doi, Investigation of performance of antiscatter grids: Monte Carlo simulation studies, Phys. Med. Biol. 27, 785–803 (1982).CrossRefGoogle Scholar
  162. 162.
    K. Doi, P. H. Frank, H. P. Chan, C. J. Vyborny, S. Makino, N. Iida, and M. Carlin, Physical and clinical evaluation of new high-strip-density radiographic grids, Radiology 147, 575–582 (1983).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Kunio Doi
    • 1
  1. 1.Kurt Rossmann Laboratories for Radiologic Image Research, Department of RadiologyUniversity of ChicagoChicagoUSA

Personalised recommendations