Skip to main content

Basic Imaging Properties of Radiographic Systems and Their Measurement

  • Chapter
Progress in Medical Radiation Physics

Abstract

The physical image quality of radiographs is known to be affected by at least three fundamental factors, namely, contrast, resolution (or sharpness), and noise (or radiographic mottle).(1,2) The contrast of a radiograph, commonly referred to as radiographic contrast, is related to the film contrast (or gradient), radiation contrast, and primary (or scatter) fraction. The gradient is usually derived from the characteristic curve (or H and D curve) of the screen-film system on which the radiographic image is recorded. The H and D curve is a basic imaging characteristic in radiographic systems and has been measured by a technique called sensitometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Rossmann, Image quality and patient exposure, Curr. Probl. Radiol 2, 1–34 (1972).

    Google Scholar 

  2. K. Doi, K. Rossmann, and A. G. Haus, Image quality and patient exposure in diagnostic radiology, Phot. Sci. Eng. 21, 269–277 (1977).

    Google Scholar 

  3. K. Rossmann, Modulation transfer function of radiographic systems using fluorescent screens, J. Opt. Soc. Am. 52, 774–777 (1962).

    Article  Google Scholar 

  4. R. H. Morgan, L. M. Bates, U. V. Gopala Rao, and A. Marinaro, Frequency response characteristics of X-ray films and screens, Am. J. Roentgenol. 92, 426–440 (1964).

    CAS  Google Scholar 

  5. M. Hofert, Messung der Kontrastubertragungsfunktion von Röntgenverstärkerfolien, Acta Radiol. Diagn. 1, 1111–1122 (1963).

    Google Scholar 

  6. K. Doi, Measurement of optical transfer functions of intensifying screens, Oyo Buturi 33, 50–52 (1964).

    Google Scholar 

  7. K. Rossmann, Spatial fluctuations of X-ray quanta and the recording of radiographic mottle, Am. J. Roentgenol. 90, 863–869 (1963).

    Google Scholar 

  8. K. Rossmann, Recording of X-ray quantum fluctuations in radiographs, J. Opt. Soc. Am. 52, 1162–1164 (1962).

    Article  Google Scholar 

  9. K. Doi, Wiener spectrum analysis of quantum statistical fluctuation and other noise sources in radiography, in Television in Diagnostic Radiology(R. D. Moseley and J. H. Rust, eds.), pp. 313–333, Aesculapius, Birmingham (1969).

    Google Scholar 

  10. H. M. Cleare, personal communication.

    Google Scholar 

  11. A. G. Haus and K. Rossmann, X-ray sensitometer for screen-film systems used in medical radiography, Radiology 94, 673–678 (1970).

    CAS  Google Scholar 

  12. J. Hale and P. Block, Step-wedge sensitometry, Radiology 128, 820–821 (1978).

    CAS  Google Scholar 

  13. Sensitometric Properties of X-Ray Films, Radiography Markets Division, Eastman Kodak, Rochester, N.Y. (1979).

    Google Scholar 

  14. D. R. Bednarek and S. Rudin, Comparison of modified boot-strap and conventional sensitometry in medical radiography, Proc. SPIE 233, 2–6 (1980).

    Google Scholar 

  15. L. K. Wagner, A. G. Haus, G. T. Barnes, J. A. Bencomo, and S. R. Amtey, Comparison of methods used to measure the characteristic curve of radiographic screen/film systems, Proc. SPIE 233, 7–10 (1980).

    Google Scholar 

  16. M. V. Yester, G. T. Barnes, and M. A. King, Peak kilo voltage boot-strap sensitometry, Radiology 136, 785–786 (1980).

    CAS  Google Scholar 

  17. G. T. Barnes, The use of bar-pattern test objects in assessing the resolution of film/screen systems, in Physics of Medical Imaging: Recording System Measurements and Techniques(A. G. Haus, ed.), pp. 138–151, American Association of Physicists in Medicine, American Institute of Physics, New York (1979).

    Google Scholar 

  18. A. G. Haus, K. Rossmann, C. J. Vyborny, P. B. Hoffer, and K. Doi, Sensitometry in diagnostic radiology, radiation therapy, and nuclear medicine, J. Appl. Photo. Eng. 3, 114–124 (1977).

    CAS  Google Scholar 

  19. G. Holje and K. Doi, Sensitivity, sensitometry, resolution, and noise characteristics of new radiographic screen-film systems, in HHS Publication FDA 82–8187, pp. 39–77, Rockville, Maryland (1982).

    Google Scholar 

  20. C. E. K. Mees and T. H. James, The Theory of the Photographic Process, pp. 409–436, Macmillan, New York (1966).

    Google Scholar 

  21. C. J. Vyborny, The speed of radiographic screen-film systems as a function of X-ray energy and its effect on radiographic contrast, Ph.D. dissertation, University of Chicago, Chicago, Illinois (1976).

    Google Scholar 

  22. C. J. Vyborny, H and D curves of screen-film systems: Factors affecting their dependence on X-ray energy, Med. Phys. 6, 39–44 (1979).

    Article  CAS  Google Scholar 

  23. G. Sanderson and G. J. Johnston, Effect of development temperature changes in an automatic processor, Proc. SPIE 70, 26–32 (1975).

    Google Scholar 

  24. H. P. Chan and K. Doi, Determination of radiographic screen-film system characteristic curve and its gradient by use of a curve-smoothing technique, Med. Phys. 5, 443–447 (1978).

    Article  CAS  Google Scholar 

  25. B. Carnahan, H. A. Luther, and J. O. Wilkes, Applied Numerical Methods, p. 129, Wiley, New York (1969).

    Google Scholar 

  26. T. R. McCalla, Introduction to Numerical Methods and FORTRAN IV Programming, p. 239, Wiley, New York (1967).

    Google Scholar 

  27. C. E. Metz and K. Doi, Transfer function analysis of radiographic imaging systems, Phys. Med. Biol. 24, 1079–1106 (1979).

    Article  CAS  Google Scholar 

  28. W. K. Pratt, Digital Image Processing, Wiley, New York (1978).

    Google Scholar 

  29. K. G. Beauchamp and C. K. Yuen, Digital Methods for Signal Analysis, George Allen and Unwin, London (1979).

    Google Scholar 

  30. J. C. Dainty and R. Shaw, Image Science, Academic, New York (1974).

    Google Scholar 

  31. A. Papoulis, Probability, Random Variables, and Stochastic Process, McGraw-Hill, New York (1965).

    Google Scholar 

  32. K. Doi and K. Rossmann, Measurements of optical and noise properties of screen-film systems in radiography, Proc. SPIE 56, 45–53 (1975).

    Google Scholar 

  33. K. Doi, G. Holje, L. N. Loo, H. P. Chan, J. M. Sandrik, R. J. Jennings, and R. F. Wagner, MTFs and Wiener spectra of radiographic screen-film systems, in HHS Publication FDA 82–8187, pp. 1–77 (1982).

    Google Scholar 

  34. R. F. Wagner, K. E. Weaver, E. W. Denny, and R. G. Bostrom, Toward a unified view of radiological imaging systems, Part 1: Noiseless images, Med. Phys. 1, 11–24 (1974).

    Article  CAS  Google Scholar 

  35. K. Doi, Optical transfer functions of the focal spot of X-ray tubes, Am. J. Roentgenol. 94, 712–718 (1965).

    CAS  Google Scholar 

  36. A. Bouwers, The practical value of contrast transfer in radiology, in Diagnostic Radiologic Instrumentation: Modulation Transfer Function, pp. 3–13, C. C. Thomas, Springfield, Illinois (1965).

    Google Scholar 

  37. K. Rossmann, Image-forming quality of radiographic screen-film systems: the line spread function, Am. J. Roentgenol. 90, 178–183 (1963).

    Google Scholar 

  38. C. H. Dyer and E. L. Criscuolo, Measurement of spatial-frequency response of certain film- screen combinations to 10-MeV X rays, Materials Evaluation631–636 (1966).

    Google Scholar 

  39. J. W. Coltman, The specification of imaging properties by response to sine wave input, J. Opt. Soc. Am. 44, 468–471 (1954).

    Article  Google Scholar 

  40. G. Lubberts, Some aspects of the square-wave response function of radiographic screen- film systems, Am. J. Roentgenol. 106, 650–654 (1969).

    CAS  Google Scholar 

  41. R. P. Rossi, W. R. Hendee, and C. R. Ahrens, An evaluation of rare-earth screen/film combinations, Radiology 121, 465–471 (1976).

    CAS  Google Scholar 

  42. T. W. Ovitt, R. Moore, and K. Amplatz, The evaluation of high-speed screen-film combinations in angiography, Radiology 121, 449–455 (1975).

    Google Scholar 

  43. J. P. Weiss, Notes on determining modulation transfer data for X-ray film-screen combinations, in Image Analysis and Evaluation(R. Shaw, ed.), pp. 527–531, SPSE (1977).

    Google Scholar 

  44. R. A. Schmidt, The use of lead test patterns for MTF measurement of radiographic screen/film systems, M.Sc. thesis, University of Chicago, Chicago, Illinois (1982).

    Google Scholar 

  45. S. Sakuma, Y. Ayakawa, Y. Okumura, and Y. Maekoshi, Determination of focal-spot characteristics of microfocus X-ray tubes, Invest. Radiol. 4, 335–339 (1969).

    Article  CAS  Google Scholar 

  46. G. Sanderson and H. M. Cleare, MTF of screen-film systems: the influence of screens and crossover, Photo. Sci. Eng. 18, 251–253 (1974).

    Google Scholar 

  47. G. U. V. Rao and P. P. Fatouros, Evaluation of a new X-ray film with reduced crossover, Med. Phys. 6, 226–228 (1979).

    Article  CAS  Google Scholar 

  48. K. Doi, L. N. Loo, T. M. Anderson, and P. H. Frank, Effect of crossover exposure on radiographic-image quality of screen-film systems, Radiology 139, 707–714 (1981).

    CAS  Google Scholar 

  49. P. C. Bunch, Imaging characteristics of screen-film systems using oblique incidence conditions, Ph.D. dissertation, University of Chicago, (1975).

    Google Scholar 

  50. R. E. Wayrynen, R. S. Holland, and R. P. Schwenker, Film-screen sharpness in complex- motion tomography, Invest. Radiol. 12, 195–198 (1977).

    Article  CAS  Google Scholar 

  51. Y. Higashida, P. H. Frank, and K. Doi, Basic imaging properties of single-screen/single-film combinations and their clinical application in diagnostic radiology, Radiology 149, 571–577 (1983).

    CAS  Google Scholar 

  52. C. J. Vyborny, C. E. Metz, K. Doi, and A. G. Haus, Calculated characteristic X-ray reabsorption in radiographic screens, J. Appl. Photo. Eng. 4, 172–177 (1978).

    CAS  Google Scholar 

  53. B. A. Arnold and B. E. Bjarngard, The effect of phosphor K X rays on the MTF of rare- earth screens, Med. Phys. 6, 500–503 (1979).

    Article  CAS  Google Scholar 

  54. G. Lubberts, The line spread function and the modulation transfer function of X-ray fluorescent screen-film systems—Problems with double-coated films, Am. J. Roentgenol. 105, 909–917 (1969).

    CAS  Google Scholar 

  55. K. Rossmann and G. Sanderson, Validity of the modulation transfer function of radiographic systems measured by the slit method, Phys. Med. Biol. 13, 259–268 (1968).

    Article  CAS  Google Scholar 

  56. K. Doi, Computer simulation study of screen-film system nonlinearity in fine-detail imaging, Phys. Med. Biol. 18, 863–877 (1973).

    Article  CAS  Google Scholar 

  57. K. Strubler, K. Doi, and K. Rossmann, Density dependence of the line spread function of screen-film systems, Phys. Med. Biol. 18, 219–225 (1973).

    Article  CAS  Google Scholar 

  58. K. Rossmann, G. Lubberts, and H. M. Cleare, Measurement of the line spread function of radiographic systems containing fluorescent screens, J. Opt. Soc. Am. 54, 187–190 (1964).

    Article  Google Scholar 

  59. G. Sanderson, Erroneous perturbations of the modulation transfer function derived from the line spread function, Phys. Med. Biol. 13, 661–663 (1968).

    Article  CAS  Google Scholar 

  60. K. Doi, K. Strubler, and K. Rossmann, Truncation errors in calculating the MTF of radiographic screen-film systems from the line spread function, Phys. Med. Biol. 17, 241–250 (1972).

    Article  CAS  Google Scholar 

  61. C. E. Metz, K. Strubler, and K. Rossmann, Choice of line spread function sampling distance for computing the MTF of radiographic screen-film systems, Phys. Med. Biol. 17, 638–647 (1972).

    Article  CAS  Google Scholar 

  62. B. A. Arnold, H. Eisenberg, and B. E. Bjarngard, The LSF and MTF of rare-earth oxysulfide intensifying screen, Radiology 121, 473–477 (1976).

    CAS  Google Scholar 

  63. K. Doi, G. Holje, L. N. Loo, and H. P. Chan, Evaluation of resolution properties of radiographic screen-film systems, HHS Publication(FDA) 80-8126, pp. 162-180, Rockville, Maryland (1980).

    Google Scholar 

  64. K. Doi and K. Sayanagi, Role of optical transfer function for optimum magnification in enlargement radiography, Jap. J. Appl. Phys. 9, 834–839 (1970).

    Article  Google Scholar 

  65. S. Uchida, Fourier analysis of X-ray tube focal-intensity distribution along the beam through optical system, Oyo Buturi 34, 97–107 (1965).

    Google Scholar 

  66. H. Kanamori, Optical transfer function of X-ray tube focal-spot sizes for various tube currents, Jap. J. Appl. Phys. 4, 227–228 (1965).

    Article  Google Scholar 

  67. E. Takenaka, K. Kinoshita, and R. Nakajima, Modulation transfer function of the intensity distribution of the roentgen focal spot, Acta Radiol (Ther) 7, 263–272 (1968).

    Article  CAS  Google Scholar 

  68. G. U. V. Rao and L. M. Bates, The modulation transfer functions of X-ray focal spots, Phys. Med. Biol. 14, 93–106 (1969).

    Article  Google Scholar 

  69. K. Kiviniitty, Modulation transfer function of the focal spot of X-ray tubes, Comm. Phys. Math. 40, 9–39 (1970).

    Google Scholar 

  70. K. Doi, L. N. Loo, and H. P. Chan, X-ray tube focal-spot sizes: Comprehensive studies of their measurement and effect of measured size in angiography, Radiology 144, 383–393 (1982).

    CAS  Google Scholar 

  71. A. Elsas, E. Fenner, R. Friedel, and H. Schnitger, Geometrische Unscharfe und Inten- sitatsverteilung in einen Rontgenaufnahmefeld, Fortschr. Rontgenstr. 115, 822–827 (1971).

    Article  Google Scholar 

  72. P. Brubacher and B. M. Moores, The modulation transfer function of the focal spot with a twin-peaked intensity distribution, Radiology 107, 635–640 (1973).

    CAS  Google Scholar 

  73. A. E. Burgess, Focal spots: I. MTF separability, Invest. Radiol 12, 36–43 (1977).

    Article  CAS  Google Scholar 

  74. A. E. Burgess, Focal spots: II. Models, Invest. Radiol 12, 44–53 (1977).

    CAS  Google Scholar 

  75. A. E. Burgess, Focal spots: III. Field characteristics, Invest. Radiol 12, 54–61 (1977).

    CAS  Google Scholar 

  76. O. Mattsson, Focal-spot variations with exposure data—important factors in daily routine, Acta. Radiol (Diagnosis) 7, 161–169 (1968).

    CAS  Google Scholar 

  77. B. M. Moores and W. Roeck, The field characteristics of the focal spot in the radiographic imaging process, Invest. Radiol 8, 53–57 (1973).

    Article  CAS  Google Scholar 

  78. D. J. Klein, R. T. Bergeron, and H. Bernstein, Wide-field resolution in radiography, Radiology 122, 811–815 (1977).

    CAS  Google Scholar 

  79. K. Doi, Field characteristics of geometric unsharpness due to the X-ray tube focal spot, Med. Phys. 4, 15–20 (1977).

    Article  CAS  Google Scholar 

  80. P. Spiegler and W. C. Breckinridge, Imaging of focal spot by means of the star test pattern, Radiology 102, 679–684 (1972).

    CAS  Google Scholar 

  81. H. Bernstein, R. T. Bergeron, and D. J. Klein, The relationship of the radiant intensity distribution of focal spots to resolution, Radiology 111, 427–431 (1974).

    CAS  Google Scholar 

  82. A. E. Burgess, Interpretation of star test pattern images, Med. Phys. 4, 1–8 (1977).

    Article  CAS  Google Scholar 

  83. A. E. Burgess, Effect of asymmetric focal spots in angiography, Med. Phys. 4, 21–25 (1977).

    Article  CAS  Google Scholar 

  84. J. E. Gray, M. P. Capp, and F. R. Whitehead, An improved technique for X-ray image evaluation, Invest. Radiol 9, 252–261 (1974).

    Article  CAS  Google Scholar 

  85. K. Doi, B. Fromes, and K. Rossmann, New device for accurate measurement of the X-ray intensity distribution of X-ray tube focal spots, Med. Phys. 2, 268–273 (1975).

    Article  CAS  Google Scholar 

  86. G. Groh, E. Klotz, and H. Weiss, Simple and fast method for the presentation of the two- dimensional modulation transfer function of X-ray systems, Appl Opt. 12, 1693–1697 (1973).

    Article  CAS  Google Scholar 

  87. K. Doi, Advantages of magnification radiography, in Breast Carcinoma: The Radiologist’s Expanded Role(W. W. Logan, ed.), pp. 83–92, Wiley, New York (1977).

    Google Scholar 

  88. K. Doi, H. K. Genant, and K. Rossmann, Comparison of image quality obtained with optical and radiographic magnification techniques in fine-detail skeletal radiography: effect of object thickness, Radiology 118, 189–195 (1976).

    CAS  Google Scholar 

  89. M. Pfeiler and K. Dietz, Microfocus X-ray tubes and the image quality obtained with geometric enlargement—comments on future developments of X-ray tubes, in Small Vessel Angiography(S. K. Hilal, S. Baum, J. J. Bookstein, R. H. Greenspan, M. P. Judkins, E. J. Potshen, K. Rossmann, and H. H. Ter-Pogossian, eds.), pp. 36–47, C. V. Mosby, St. Louis (1973).

    Google Scholar 

  90. H. Eisenberg, M. Braun, B. Arnold, W. Holland, and R. Gould, Evaluation of microfocal-spot X-ray tubes and rare-earth oxysulfide intensifying screens in magnification radiography, Proc. SPIE 56, 184–190 (1976).

    Google Scholar 

  91. E. A. Sickles, K. Doi, and H. K. Genant, Magnification film mammography: studies of image quality and clinical evaluation, Radiology 125, 69–76 (1977).

    CAS  Google Scholar 

  92. H. Imhof and K. Doi, Application of radiographic magnification technique with an ultra- high-speed rare-earth screen-film system to oral cholecystography, Radiology 129, 173–178 (1978).

    CAS  Google Scholar 

  93. A. G. Haus, K. Doi, J. R. Chiles, K. Rossmann, and R. A. Mintzer, The effect of geometric and recording system unsharpness in mammography, Invest. Radiol. 10, 43–52 (1975).

    Article  Google Scholar 

  94. H. K. Genant and K. Doi, High-resolution skeletal radiography: image quality and clinical applications, Curr. Probl. Diag. Radiol. 7, 1–62 (1978).

    CAS  Google Scholar 

  95. International Commission of Radiological Units and Measurements, Methods of Evaluating Radiological Equipment and Materials: recommendations of the ICRU, NBS Handbook 89, GPO Washington, D.C. (1962).

    Google Scholar 

  96. National Electrical Manufacturers’ Association, Measurement of dimensions of focal spots of diagnostic X-ray tubes, NEMA Standard 9-11-1974, Publication No. XR5-1974, New York.

    Google Scholar 

  97. A. H. G. Kuntke, On the determination of roentgen tube focal-spot sizes by pinhole camera roentgenography, Acta. Radiol. 47, 55–64 (1957).

    CAS  Google Scholar 

  98. B. A. Arnold, B. E. Bjarngard, and J. C. Klopping, A modified pinhole camera method for investigation of X-ray tube focal spots, Phys. Med. Biol. 18, 540–549 (1973).

    Article  CAS  Google Scholar 

  99. International Electrical Commission: Characteristic of focal spots in diagnostic X-ray tube assemblies for medical use, draft proposal (1980).

    Google Scholar 

  100. E. Zieler and H. Pulvermacher, Evaluation of size and MTF measurements on X-ray sources, presented at the 14th International Congress of Radiology, October 23–29, Rio de Janeiro (1977).

    Google Scholar 

  101. K. Doi and K. Rossmann, Evaluation of focal-spot distribution by RMS value and its effect on blood vessel imaging in angiography, Proc. SPIE 47, 207–213 (1975).

    Google Scholar 

  102. M. Braun, W. Roeck, and G. Gillian, X-ray tube performance characteristics and their effect on radiologic-image quality, Proc. SPIE 152, 94–103 (1978).

    Google Scholar 

  103. M. Braun, Focal spots in the future of mammography, in Reduced-Dose Mammography(W. W. Logan and E. P. Muntz, eds.), pp. 195–209, Masson, New York (1979).

    Google Scholar 

  104. G. U. V. Rao and L. M. Bates, Effective dimensions of roentgen tube focal spots based on measurements of the modulation transfer function, Acta. Radiol. (Ther) 9, 362–368 (1970).

    Article  CAS  Google Scholar 

  105. J. J. Bookstein and W. Steck, Effective focal-spot size, Radiology 98, 31–33 (1971).

    CAS  Google Scholar 

  106. G. U. V. Rao, A new method to determine the focal-spot size of X-ray tubes, Am. J. Roentgenol. 111, 628–633 (1971).

    CAS  Google Scholar 

  107. P. J. Friedman and R. H. Greenspan, Observation on magnification radiography: Visualization of small blood vessels and determination of focal-spot size, Radiology 92, 549–557 (1969).

    CAS  Google Scholar 

  108. Nuclear Associates, Inc., Carle Place, New York, Catalog G-1.

    Google Scholar 

  109. S. C. Prasad, W. R. Hendee, and P. L. Carlson, Intensity distribution, modulation transfer function, and the effective dimension of a line-focus X-ray focal spot, Med. Phys. 3, 217–223 (1976).

    Article  CAS  Google Scholar 

  110. S. C. Prasad and W. R. Hendee, Effective size of the transverse dimension of X-ray tube focal spots, Med. Phys. 4, 235–238 (1977).

    Article  CAS  Google Scholar 

  111. K. Doi and K. Rossmann, Computer simulation of small blood vessel imaging in magnification radiography, in Small Vessel Angiography(S. K. Hilal, S. Baum, J. J. Bookstein, M. P. Judkins, E. J. Potshen, K. Rossmann, and H. H. Ter-Pogossian, eds.), pp. 6–12, C. V. Mosby, St. Louis (1973).

    Google Scholar 

  112. S. Wende, E. Zieler, and N. Nakayama, Cerebral Magnification Angiography, Springer- Verlag, Berlin (1974).

    Google Scholar 

  113. T. Sandor, D. F. Adams, P. G. Herman, H. Eisenberg, and H. L. Abrams, The potential of magnification angiography, Am. J. Roentgenol. 120, 916–921 (1974).

    CAS  Google Scholar 

  114. K. Doi and K. Rossmann, Effect of focal-spot distribution on blood vessel imaging in magnification angiography, Radiology 114, 435–441 (1975).

    CAS  Google Scholar 

  115. K. Doi, L. N. Loo, and K. Rossmann, Validity of computer simulation of blood vessel imaging in angiography, Med. Phys. 4, 400–403 (1977).

    Article  CAS  Google Scholar 

  116. E. N. C. Milne, Characterizing focal-spot performance, Radiology 111, 483–486 (1974).

    CAS  Google Scholar 

  117. R. T. Bergeron, Manufacturers’ designation of diagnostic X-ray tube focal-spot size: a time for candor, Radiology 111, 487–488 (1974).

    CAS  Google Scholar 

  118. H. Bernstein, R. T. Bergeron, and D. J. Klein, Routine evaluation of focal spots, Radiology 111, 421–425 (1974).

    CAS  Google Scholar 

  119. W. R. Hendee and E. L. Chaney, X-ray focal spots: practical considerations, Appl. Radiol. 3, 25–29 (1974).

    Google Scholar 

  120. G. T. Barnes, Radiographic mottle: A comprehensive theory, Med. Phys. 9, 656–667 (1982).

    Article  CAS  Google Scholar 

  121. K. Doi and H. Imhof, Noise reduction by radiographic magnification, Radiology 122,479–487 (1977).

    CAS  Google Scholar 

  122. E. A. Sickles, Microfocal-spot magnification mammography using xeroradiographic and screen-film recording systems, Radiology 131, 599–607 (1979).

    CAS  Google Scholar 

  123. K. Rossmann, J. R. Williams, and D. J. Goodenough, Evaluation of radiologic-image quality, Proc. SPIE 35, 75–81 (1973).

    Google Scholar 

  124. L. N. Loo, Correlation between visual- and physical-image quality indices: Detectability of nylon bead images in radiographic noise, Ph.D. dissertation, University of Chicago (1982).

    Google Scholar 

  125. R. F. Wagner, Decision theory and the detail signal-to-noise ratio of Otto Schade, Photo. Sci. Eng. 22, 41–46 (1978).

    Google Scholar 

  126. A. E. Burgess, R. F. Wagner, and R. J. Jennings, Human signal detection performance for noisy medical images, Proc. IEEE (to be published).

    Google Scholar 

  127. M. Ishida, K. Doi, L. N. Loo, C. E. Metz, and J. L. Lehr, Digital-imaging processing: effect on the detectabilities of simulated low-contrast radiographic patterns, Radiology 150, 569–575 (1984).

    CAS  Google Scholar 

  128. R. F. Wagner, Toward a unified view of radiological-imaging systems. Part II: Noisy images, Med. Phys. 4, 279–296 (1977).

    Article  CAS  Google Scholar 

  129. G. T. Barnes, The dependence of radiographic mottle on beam quality, Am. J. Roentgenol. 127, 819–824 (1976).

    CAS  Google Scholar 

  130. R. F. Wagner and K. E. Weaver, Noise measurements on rare-earth intensifying screen systems, Proc. SPIE 56, 198–207 (1975).

    Google Scholar 

  131. R. F. Wagner, Fast Fourier digital quantum mottle analysis with application to rare-earth intensifying screen systems, Med. Phys. 4, 157–162 (1977).

    Article  CAS  Google Scholar 

  132. R. A. Buchanan, S. I. Finkelstein, and K. A. Wickersheim, X-ray exposure reduction using rare-earth oxysulfide intensifying screens, Radiology 105, 185–190 (1972).

    CAS  Google Scholar 

  133. R. F. Wagner and K. E. Weaver, Prospects for X-ray exposure reduction using rare-earth intensifying screens, Radiology 118, 183–188 (1976).

    CAS  Google Scholar 

  134. A. L. N. Stevels, New phosphors for X-ray screens, Med. Mundi 20, 12–22 (1975).

    Google Scholar 

  135. H. M. Cleare, H. R. Splettstossor, and H. F. Seemann, An experimental study of the mottle produced by X-ray intensifying screens, Am. J. Roentgenol. 188, 168–174 (1962).

    Google Scholar 

  136. G. Lubberts, Random noise produced by X-ray fluorescent screens, J. Opt. Soc. Am. 58, 1475–1483 (1968).

    Article  Google Scholar 

  137. R. E. Shuping and P. F. Judy, Energy absorbed in calcium tungstate X-ray screens, Med. Phys. 4, 239–243 (1977).

    Article  CAS  Google Scholar 

  138. C. J. Vyborny, L. N. Loo, and K. Doi, The energy-dependent behavior of noise Wiener spectra in their low-frequency limits: comparison with simple theory, Radiology 144, 619–622 (1982).

    CAS  Google Scholar 

  139. G. Holje, An investigation of imaging properties of radiographic screen-film systems, Ph.D. dissertation, the University of Lund, Lund, Sweden (1983).

    Google Scholar 

  140. H. P. Chan and K. Doi, Energy and angular dependence of X-ray absorption in screen-film system, Phys. Med. Biol. 28, 565–579 (1983).

    Article  CAS  Google Scholar 

  141. C. E. Metz and C. J. Vyborny, Wiener spectral effects of spatial correlation between the sites of characteristic X-ray emission and reabsorption in radiographic screen-film systems, Phys. Med. Biol. 28, 547–564 (1983).

    Article  CAS  Google Scholar 

  142. R. K. Swank, Absorption and noise in X-ray phosphors, J. Appl. Phys. 44, 4199–4203 (1973).

    Article  CAS  Google Scholar 

  143. C. E. Dick and J. W. Motz, Image information transfer properties of X-ray fluorescent screens, Med. Phys. 8, 337–346 (1981).

    Article  CAS  Google Scholar 

  144. C. E. Dick, J. W. Motz, and H. Roehrig, New method for the experimental determination of the detective quantum efficiency of X-ray screens, Proc. SPIE 233, 11–15 (1980).

    Google Scholar 

  145. K. Doi, Scans in measuring Wiener spectra for photographic granularity, Jap. J. Appl. Phys. 5, 1213–1216 (1966).

    Article  CAS  Google Scholar 

  146. J. H. Altman, Sensitometry of black-and-white materials, in The Theory of the Photographic Process, 4th ed. (T. H. James, ed.), p. 181, MacMillan, New York (1977).

    Google Scholar 

  147. R. C. Jones, Quantum efficiency of detectors for visible and infrared radiation, in Advances in Electronics and Electron Products, XI (L. Marton, ed.), pp. 83–183. Academic, New York (1959).

    Google Scholar 

  148. R. Shaw, Evaluating the efficiency of imaging processes, Rep. Prog. Phys. 41, 1103–1115 (1978).

    Article  CAS  Google Scholar 

  149. J. M. Sandrik and R. F. Wagner, Absolute measures of physical-image quality: measurement and application to radiographic magnification, Med. Phys. 9, 540–549 (1982).

    Article  CAS  Google Scholar 

  150. J. M. Sandrik and R. F. Wagner, Radiographic screen-film noise power spectrum: variation with microdensitometer slit length, Appl. Opt. 20, 2795–2798 (1981).

    Article  CAS  Google Scholar 

  151. M. DeBelder and J. DeKerf, The determination of the Wiener spectrum of photographic emulsion layers with digital methods, Photo. Sci. Eng. 11, 373–378 (1967).

    Google Scholar 

  152. J M. Sandrik, R. F. Wagner, and K. E. Hanson, Radiographic screen-film noise power spectrum: calibration and intercomparison, Appl. Opt. 21, 3597–3602 (1982).

    Article  CAS  Google Scholar 

  153. R. F. Wagner and J. M. Sandrik, An introduction to digital noise analysis, in The Physics of Medical Images: Recording System Measurements and Techniques, pp. 524–545 ( A. G. Haus, ed.), American Institute of Physics, New York (1979).

    Google Scholar 

  154. K. Doi, Y. Kodera, L. N. Loo, H. P. Chan, and Y. Higashida, MTFs and Wiener spectra of radiographic screen-film system, vol. II, HHS Publication (FDA) (to be published).

    Google Scholar 

  155. C. J. Vyborny, C. E. Metz, and K. Doi, Large-area contrast prediction in screen-film systems, Proc. SPIE 23, 30–36 (1980).

    Google Scholar 

  156. H. P. Chan, Investigation of physical characteristics of scattered radiation and performance of antiscatter grids in diagnostic radiology: Monte Carlo simulation studies, Ph.D. dissertation, University of Chicago (1981).

    Google Scholar 

  157. H. P. Chan and K. Doi, Physical characteristics of scattered radiation and performance of antiscattered grids in diagnostic radiology, Radio Graphics 2, 378–406 (1982).

    Google Scholar 

  158. H. P. Chan and K. Doi, The validity of Monte Carlo simulation studies of scattered radiation in diagnostic radiology, Phys. Med. Biol. 28, 109–129 (1983).

    Article  CAS  Google Scholar 

  159. J. A. Sorenson and J. A. Nelson, Investigation of moving-slit radiography, Radiology 120, 705–711 (1976).

    CAS  Google Scholar 

  160. G. T. Barnes, I. A. Brezovich, and D. M. Witten, Scanning multiple-slit assembly: A practical and efficient device to reduce scatter, Am. J. Roentgenol. 129, 497–501 (1977).

    CAS  Google Scholar 

  161. H. P. Chan and K. Doi, Investigation of performance of antiscatter grids: Monte Carlo simulation studies, Phys. Med. Biol. 27, 785–803 (1982).

    Article  CAS  Google Scholar 

  162. K. Doi, P. H. Frank, H. P. Chan, C. J. Vyborny, S. Makino, N. Iida, and M. Carlin, Physical and clinical evaluation of new high-strip-density radiographic grids, Radiology 147, 575–582 (1983).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Doi, K. (1985). Basic Imaging Properties of Radiographic Systems and Their Measurement. In: Orton, C.G. (eds) Progress in Medical Radiation Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2387-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2387-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9458-0

  • Online ISBN: 978-1-4613-2387-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics