Syringeal Structure and Avian Phonation

  • Abbot S. Gaunt
  • Sandra L. L. Gaunt
Part of the Current Ornithology book series (CUOR, volume 2)

Abstract

Studies of syringeal function have historically been hampered by two difficulties, one technical and one perceptual. The technical difficulty is that because the syrinx is at the base of a long trachea and because its functioning is distorted if the surrounding interclavicular airsac is ruptured, direct observation of natural syringeal function has so far proved impossible. Hence, all analyses of syringeal function are based on indirect evidence. Such evidence may be obtained from dissections, manipulations of extracted syrinxes, models, analyses of physiological events associated with phonation, or analyses of the sounds produced.

Keywords

Vortex Cage Respiration Testosterone Stein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abs, M., 1970, Uber Hormonwirkungen auf Lautäusserungen von Haustauben, J. Ornithol. 111:227–229.CrossRefGoogle Scholar
  2. Abs, M., 1980, Zur Bioakustik des Stimmbruchs bei Vogeln, ZooJ. Jb. Physiol.84:289–382.Google Scholar
  3. Ames, P. L., 1971, The morphology of the syrinx in passerine birds, Peabody Mus. Nat. His. Bull. 37:1–195.Google Scholar
  4. Bailey, E. D., Baker, J. A., 1982, Recognition characteristics in covey dialects of Bobwhite Quail, Condor 84:317–320.CrossRefGoogle Scholar
  5. Beddard, F. E., 1898, The Structure and Classification of Birds, Longmans, Green & Co., New York.CrossRefGoogle Scholar
  6. Beebe, [C] W., 1925, The Variegated Tinamou, Crypturus variegatus variegatus(Gmelin), Zoologica6:195–227.Google Scholar
  7. Berger, M., Hart, J. S., 1968, Ein Beitrag zum Zusammenhang zwischen Stimme und Atmung bei Vögeln, J. Ornithol. 109:421–424.CrossRefGoogle Scholar
  8. Borror, D. J., Reese, C. R., 1956, Vocal gymnastics in Wood Thrush songs, Ohio J. Sci. 56:177–182.Google Scholar
  9. Brackenbury, J. H., 1977, Physiological energetics of cock-crow, Nature 270:433–435.CrossRefGoogle Scholar
  10. Brackenbury, J. H., 1978a, Respiratory mechanics of sound production in chickens and geese, J. Exp. Biol. 72:229–250.Google Scholar
  11. Brackenbury, J. H., 1978b, A comparison of the origin and temporal arrangement of pulsed sounds in the songs of the Grasshopper and Sedge Warblers, Locustella naeviaand Acrocephalus schoenobaenus, J. Zool. Lond. 184:187–206.CrossRefGoogle Scholar
  12. Brackenbury, J. H., 1978c, A possible relationship between respiratory movements, syringeal movements, and the production of song by Skylarks Alauda arvensis, Ibis, 120:526–528.CrossRefGoogle Scholar
  13. Brackenbury, J. H., 1979a, Power capabilities of the avian sound-producing system, J. Exp. Biol. 78:163–166.Google Scholar
  14. Brackenbury, J. H., 1979b, Aeroacoustics of the vocal organ of birds, J. Theor. Biol. 81:341–349.CrossRefPubMedGoogle Scholar
  15. Brackenbury, J. H., 1982, The structural basis of voice production and its relationship to sound characteristics, in: Acoustic Communication in Birds, Volume 1, ( D. E. Kroodsma, E. H. Miller, eds), Academic Press, New York, pp.53–73.CrossRefGoogle Scholar
  16. Brockway, B. F., 1967, The influence of vocal behavior on the performer’s testicular activity in Budgerigars (Melopsittacus undulatus), Wilson Bull. 79:328–334.Google Scholar
  17. Calder, W. A., 1970, Respiration during song in the Canary (Serinius canaria), Comp. Biochem. Physiol. 32:251–258.CrossRefPubMedGoogle Scholar
  18. Casey, R. M., 1981, Theoretical analysis of tympanic membranes in avian syrinx, M. Sc. Dissertation, The Ohio State University, Columbus.Google Scholar
  19. Chamberlain, D. R., Gross, W. B., Cornwell, G. W., and Mosby, H. S., 1968, Syringeal anatomy in the Common Crow, Auk 85:244–252.CrossRefGoogle Scholar
  20. Chanaud, R. C., 1970, Aerodynamic whistles, Sci. Am. 222 (1):40–46.CrossRefGoogle Scholar
  21. Duncker, H.-R., 1971, The Lung Air Sac System of Birds: A Contribution to the Functional Anatomy of the Respiratory Apparatus, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  22. Dürrwang, R. F., 1974, Functionelle Biologie, Anatomie und Physiologie der Vogel-stimme, Ph. D. Dissertation, University Basil, Basil, Switzerland.Google Scholar
  23. Emlen, S. T., 1972, An experimental analysis of the parameters of bird song soliciting species recognition, Behavior 41:130–171.CrossRefGoogle Scholar
  24. Gaunt, A. S., 1983a, An hypothesis concerning the relationship of syringeal structure to vocal abilities, Auk 100:853–862.Google Scholar
  25. Gaunt, A. S., 1983b, On sonograms, harmonics, and assumptions, Condor 85:259–261.CrossRefGoogle Scholar
  26. Gaunt, A. S., Gaunt, S. L. L., 1977, Mechanics of the syrinx in Gall us gallus II. Electromyographic studies of ad libitumvocalizations, J. MorphoJ. 152:1–19.CrossRefPubMedGoogle Scholar
  27. Gaunt, A. S., Gaunt, S. L. L., 1982, Electromyography of the syringeal muscles in parrots, Am. ZooJ. 22:918.Google Scholar
  28. Gaunt, A. S., Wells, M. K., 1973, Models of syringeal mechanisms, Am. Zool. 13:1227–1247.CrossRefGoogle Scholar
  29. Gaunt, A. S., Gaunt, S. L. L., Casey, R. M., 1982, Syringeal mechanics reassessed: Evidence from Streptopelia, Auk 99:474–494.Google Scholar
  30. Gaunt, A. S., Gaunt, S. L. L., Hector, D. H., 1976, Mechanics of the syrinx in Gallus gallus. l. A comparison of pressure events in chickens to those in oscines, Condor 73:208–223.CrossRefGoogle Scholar
  31. Gaunt, A. S., Stein, R. C., Gaunt, S. L. L., 1973, Pressure and air flow during distress calls of the Starling, Sturnus vulgaris(Aves: Passeriformes), J. Exp. Zool. 183:241–262.CrossRefGoogle Scholar
  32. Gottlieb, G., Vandenbergh, J. G., 1968, Ontogeny of vocalization in duck and chick embryos, J. Exp. Zool. 168:307 –326.CrossRefPubMedGoogle Scholar
  33. Greenewalt, C. H., 1968, Bird Song: Acoustics and Physiology. Smithsonian Institution Press, Washington, D. C.Google Scholar
  34. Gross, W. B., 1964a, Voice production by the chicken, Poult. Sci. 43:1005–1008.CrossRefGoogle Scholar
  35. Gross, W. G., 1964b, Devoicing the chicken, Poult. Sci. 43:1143–1144.CrossRefGoogle Scholar
  36. Gross, W. B., 1979, An operation for reducing the vocal intensity of peafowl, Avian Dis. 23:1031–1036.CrossRefPubMedGoogle Scholar
  37. Herissant, [F.-D.], 1753, Recherches sur les organes de voix des quadrupédes et de celle des oiseaux, Acad. Roy. Sci. Mem. (Paris), pp. 279–295.Google Scholar
  38. Hersh, G. L., 1966, Bird voices and resonant tuning in helium-air mixtures, PH. D. Dissertation, University of California, Berkeley.Google Scholar
  39. Hunter, M. L., Jr., 1980. Vocalization during inhalation in a nightjar, Condor 82:101–103.CrossRefGoogle Scholar
  40. Klatt, D. H., Stefanski, R. A., 1974, How does a mynah bird imitate human speech? J. Acoust. Soc. Am. 55:822–832.CrossRefPubMedGoogle Scholar
  41. Kroodsma, D. E., Miller, E. H., 1982, Introduction, in: Acoustic Communication in Birds, Volume 1, Production, Perception and Design Features of Sound( D. E. Kroodsma, E. H. Miller eds), Academic Press, New York, pp. xxi–xxxi.Google Scholar
  42. Lieberman, P., 1975, On the Origins of Language: An Introduction to the Evolution of Human Speech, Macmillan, New York.Google Scholar
  43. Lockner, F. R., Murrish, D. E., 1975, Interclavicular air sac pressures and vocalization in Mallard Ducks Anas platyrhynchos, Comp. Biochem. Physiol. 52A:183–187.CrossRefGoogle Scholar
  44. Lockner F. R., Youngren, O. M., Functional syringeal anatomy of the Mallard, I. In situ electromyograms during ESB elicited calling, Auk 93:324–342.Google Scholar
  45. Miller, A. H., 1934, The vocal apparatus in some North American owls, Condor 36:204–213.CrossRefGoogle Scholar
  46. Miller, D. B., 1977, Two-voice phenomenon in birds: Further evidence, Auk 94:567–572.Google Scholar
  47. Miller, E. H., 1983, The structure of aerial displays in three species of Calidridinae (Scolopacidae), Auk 100:440–451.Google Scholar
  48. Miskimen, M., 1951, Sound production in passerine birds, Auk 68:493–504.CrossRefGoogle Scholar
  49. Myers, J. A., 1917, Studies on the syrinx of Gallus domesticus, J. Morphol. 29:165–214.CrossRefGoogle Scholar
  50. Nottebohm, F., 1971, Neural lateralization of vocal control in a passerine bird. 1. Song, J. Exp. Zool. 177:229–262.CrossRefPubMedGoogle Scholar
  51. Nottebohm, F., 1975, Vocal behavior in birds, in: Avian Biology, Volume 5 ( D. S. Farner, J. S. King eds), Academic Press, New York, pp. 289–332.Google Scholar
  52. Nottebohm, F., 1976, Phonation in the Orange-winged Amazon Parrot, Amazona amazonica, J. Comp. Physiol. 108(A):157–170.CrossRefGoogle Scholar
  53. Paulsen, K., 1967, Das Prinzip der Stimmbildung in der Wirbeltierreihe und beim MenschenAkad. Verlag., Frankfurt am Main.Google Scholar
  54. Peek, F. E., Youngren, O. M., Phillips, R. E., 1975, Repetitive vocalizations evoked by electrical stimulation of avian brains. IV. Evoked and spontaneous activity in expiratory and inspiratory nerves and muscles of the chicken (Gallus gallus), Brain Behav. Evol. 12:1–42.CrossRefPubMedGoogle Scholar
  55. Phillips, R. E., Youngren, O. M., 1981, Effects of denervation of the tracheo-syringeal muscles on frequency control in vocalizations of chicks, Auk 98:299–306.Google Scholar
  56. Phillips, R. E., Youngren, O. M., Peek, F. W., 1972, Repetitive vocalizations evoked by local electrical stimulation of avian brains. I. Awake chickens (Gallus gallus), Anim. Behav. 20:689–705.CrossRefPubMedGoogle Scholar
  57. Potter, R. K., Kopp, G. A., Green, H. C., 1947, Visible Speech, D. van Nostrand Co., Princeton, New Jersey.Google Scholar
  58. Rossing, T. D., 1982, The Science of Sound, Addison-Wesley, Reading, Massachusetts.Google Scholar
  59. Rüppell, W., 1933, Physiologie und Akustik der Vogelstimme, J. Ornithol. 81:433–542.CrossRefGoogle Scholar
  60. Smith, D. G., 1977, The role of the sternotrachealis muscles in bird song production, Auk 94:152–155.Google Scholar
  61. Stein, R. S., 1968, Modulation in bird sounds Auk 85:229–243.CrossRefGoogle Scholar
  62. Sutherland, C. A., McChesney, D. S., 1965, Sound production in two species of geese, Living Bird 4:99–106.Google Scholar
  63. Suthers, R. A., Hector, D. G., 1982, Mechanism of the production of echolocating clicks by the Grey Swiftlet, Collocalia spodiopygia, J. Comp. Physiol. 148:457–470CrossRefGoogle Scholar
  64. Thorpe, W. H., 1961, Bird Song, Cambridge University Press, London.Google Scholar
  65. van den Berg, Jw., 1968, Sound production in isolated human larynges, Ann. N. Y. Acad. Sci.155:18–26.CrossRefPubMedGoogle Scholar
  66. Warner, R. W., 1969, The anatomy of the avian syrinx, Ph.D. Dissertation, University of London.Google Scholar
  67. Warner, R. W., 1971, The structural basis of the organ of voice in the genera Anasand Aythya(Aves)., J. Zool. 164:197–207,CrossRefGoogle Scholar
  68. Warner, R. W., 1972a, The syrinx in family Columbidae, J. Zool. 166:385–390.CrossRefGoogle Scholar
  69. Warner, R. W., 1972b, The anatomy of the syrinx in passerine birds, J. Zool. 168:381–393.CrossRefGoogle Scholar
  70. White, S. S., 1968. Movement of the larynx during crowing in the domestic cock, J. Anat 103:390–392.Google Scholar
  71. Wilson, T. A., Beavers, G. S., DeCoster, M. A., Holger, D. K., Regenfuss, M. D., 1971, Experiments on the fluid mechanics of whistling, J. Acoust. Soc. Am. 50:366–372.CrossRefGoogle Scholar
  72. Youngren, O. M., Peek, F. W., Phillips, R. E., 1974, Repetitive vocalizations evoked by local electrical stimulation of avian brains. III. Evoked activity in the tracheal muscles of the chicken (Gallus gall us). Brain Behav. Evol. 9:393–421.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Abbot S. Gaunt
    • 1
  • Sandra L. L. Gaunt
    • 1
  1. 1.Department of ZoologyThe Ohio State UniversityColumbusUSA

Personalised recommendations