Hormonal Regulation of Phosphoinositide Metabolism in Rat Hepatocytes

  • John N. Fain
  • Michael Wallace
  • Sue-Hwa Lin
  • Irene Litosch

Abstract

This chapter reviews recent advances on the hormonal regulation of phosphoinositide metabolism in rat hepatocytes. The pioneering work of Hokin and Hokin on pancreatic slices demonstrated that acetylcholine stimulated the uptake of 32P into phosphatidic acid and phosphatidylinositol (PI) but not into other phospholipids [1]. Durell et al. [2] suggested that the increased turnover of PI and phosphatidic acid was secondary to an initial hormone-stimulated breakdown of PI.

Keywords

Lipase Norepinephrine Cytosol Epinephrine Acetylcholine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hokin, M. R.; Hokin, L. E. Enzyme secretion and the incorporation of 32P into phospholipids of pancreas slices. J. Biol. Chem 203: 967–977, 1953.PubMedGoogle Scholar
  2. 2.
    Durell, J.; Garland, J. T.; Friedel, R. O. Acetylcholine action: Biochemical aspects. Science 165: 862–866, 1969.PubMedCrossRefGoogle Scholar
  3. 3.
    Michell, R. H. Inositol phospholipids and cell surface receptor function. Biochim. Biophys Acta 415: 81–147, 1975.PubMedGoogle Scholar
  4. 4.
    Fain, J. N. Involvement of phosphatidylinositol breakdown in elevation of cytosol Ca2+ by hormones and relationship to prostaglandin formation. Horizons Biochem. Biophys. 6: 237–276, 1982.Google Scholar
  5. 5.
    Downes, C. P.; Michell, R. H. Phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate lipids in search of a function. Cell Calcium 3: 467–502, 1982.PubMedCrossRefGoogle Scholar
  6. 6.
    Blackmore, P. F.; Brumley, F. T.; Marks, J. L.; Exton, J. H. Studies on alpha-adrenergic activation of hepatic glucose output. J. Biol. Chem 253: 4851–4858, 1978PubMedGoogle Scholar
  7. 7.
    Chen, J. L.; Babcock, D. F.; Lardy, H. A. Norepinephrine, vasopressin, glucagon, and A-23187 induce efflux of calcium from an exchangeable pool in isolated rat hepatocytes. Proc. Natl. Acad. Sci. USA 75: 2234–2238, 1978.PubMedCrossRefGoogle Scholar
  8. 8.
    Althaus-Salzmann, M.; Carafoli, E.; Jakob, A. Ca2+, K+ redistributions and alpha-adrenergic activation of glycogenolysis in perfused rat livers. Eur. J. Biochem 106: 241–248, 1980.PubMedCrossRefGoogle Scholar
  9. 9.
    Malbon, C. C.; Gilman, H. R.; Fain, J. N. Hormonal stimulation of cyclic AMP accumulation and glycogen phosphorylase activity in calcium-depleted hepatocytes from euthyroid and hypothyroid rats. Biochem. J. 188: 593–599, 1980.PubMedGoogle Scholar
  10. 10.
    Tolbert, M. E. M.; White, A. C.; Aspry, K.; Cutts, J.; Fain, J. N. Stimulation by vasopressin and a- catecholamines of phosphatidylinositol formation in isolated rat liver parenchymal cells. J. Biol. Chem. 255: 1938–1944, 1980.Google Scholar
  11. 11.
    Fain, J. N.; Lin, S.-H.; Randazzo, P.; Robinson, S.; Wallace, M. Hormonal regulation of glycogen phosphorylase in rat hepatocytes: Activation of phosphatidylinositol breakdown by vasopressin and alpha1 catecholamines. In: Isolation, Characterization and Use of Hepatocytes, R. A. Harris and N. W. Cornell, eds., New York, Elsevier, 1983, pp. 411–418.Google Scholar
  12. 12.
    Litosch, I.; Lin, S.-H.; Fain, J. N. Rapid changes in hepatocyte phosphoinositides induced by vasopressin. J. Biol. Chem. 258: 13727–13732, 1983.Google Scholar
  13. 13.
    Lin, S.H.; Fain, J. N. Vasopressin and epinephrine stimulation of phosphatidylinositol breakdown in the plasma membrane of rat hepatocytes. Life Sci. 18: 1905–1912, 1981.Google Scholar
  14. 14.
    Wallace, M. A.; Randazzo, P.; Li, S.-Y.; Fain, J. N. Direct stimulation of phosphatidylinositol degradation by addition of vasopressin to purified rat liver plasma membranes. Endocrinology 111: 341–343, 1982.CrossRefGoogle Scholar
  15. 15.
    Wallace, M. A.; Giraud, F.; Poggioli, J.; Claret, M. Norepinephrine-induced loss of phosphatidylinositol from isolated rat liver plasma membrane. FEBS Lett. 156: 239–243, 1983.CrossRefGoogle Scholar
  16. 16.
    Burgess, G. M.; Giraud, F.; Poggioli, J.; Claret, M. Adrenergically mediated changes in membrane lipid fluidity and Ca2+ binding in isolated rat liver plasma membranes. Biochim. Biophys. Acta 731: 387–396, 1983.CrossRefGoogle Scholar
  17. 17.
    Harrington, C. A.; Eichberg, J. Norepinephrine causes aj-adrenergic receptor-mediated decrease of phosphatidylinositol in isolated rat liver plasma membranes supplemented with cytosol. J. Biol. Chem. 258: 2087–2090, 1983.Google Scholar
  18. 18.
    Kemp, P.; Hiibscher, G.; Hawthorne, J. N. Phosphoinositides. 3. Enzymic hydrolysis of inositol-containing phospholipids. Biochem. J. 79: 193–200, 1960.Google Scholar
  19. 19.
    Dawson, R. M. C.; Hemington, N.; Irvine, R. F. The inhibition and activation of Ca2+ -dependent phosphatidylinositol phosphodiesterase by phospholipids and blood plasma. Eur. J. Biochem. 112: 33–38, 1980.CrossRefGoogle Scholar
  20. 20.
    Hofmann, S. J.; Majerus, P. W. Modulation of phosphatidylinositol-specific phospholipase C activity by phospholipid interactions, diglycerides and calcium ions. J. Biol. Chem. 257: 14359–14364, 1982.Google Scholar
  21. 21.
    Goodhardt, M.; Ferry, N.; Geynet, P.; Hanoune, J. Hepatic aradrenergic receptors show agonist-specific regulation by guanine nucleotides. J. Biol. Chem. 257: 11577–11583, 1982.Google Scholar
  22. 22.
    Lin, S.-H.; Wallace, M. A.; Fain, J. N. Regulation of Ca2+ -Mg2+ -ATPase activity in hepatocyte plasma membranes by vasopressin and phenylephrine. Endocrinology 113: 2268–2275, 1983.CrossRefGoogle Scholar
  23. 23.
    Michell, R. H.; Kirk, C. J.; Jones, L. M.; Downes, C. P.; Creba, J. A. The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: Defined characteristics and unanswered questions. Philos. Trans. R. Soc. London Ser. B 296: 123–137, 1981.CrossRefGoogle Scholar
  24. 24.
    Prpic, V.; Blackmore, P. F.; Exton, J. H. Phosphatidylinositol breakdown induced by vasopressin and epinephrine in hepatocytes is calcium-dependent. J. Biol. Chem. 257: 11323–11331, 1982.Google Scholar
  25. 25.
    Rhodes, D.; Prpic, V.; Exton, J. H.; Blackmore, P. F. Stimulation of phosphatidylinositol 4,5 bisphosphate hy drolysis in hepatocytes by vasopressin. J. Biol. Chem. 258: 2770–2773, 1983.Google Scholar
  26. 26.
    Kirk, C. J.; Creba, J. A.; Downes, C. P.; Michell, R. H. Hormone-stimulated metabolism of inositol lipids and its relationship to hepatic receptor function. Biochem. Soc. Trans. 9: 377–379, 1981.Google Scholar
  27. 27.
    Thomas, A. P.; Marks, J. S.; Coll, K. E.; Williamson, J. R. Quantitation and early kinetics of inositol lipid changes induced by vasopressin in isolated and cultured hepatocytes. J. Biol. Chem. 258: 5716–5725, 1983.Google Scholar
  28. 28.
    Kirk, C. J.; Verrinder, T. R.; Hems, D. A. The influence of extracellular calcium concentration on the vasopressin-stimulated incorporation of inorganic phosphate into phosphatidylinositol in hepatocyte suspensions. Biochem. Soc. Trans. 6: 1031–1033, 1978.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • John N. Fain
    • 1
  • Michael Wallace
    • 1
  • Sue-Hwa Lin
    • 1
  • Irene Litosch
    • 1
  1. 1.Section of Biochemistry, Division of Biology and MedicineBrown UniversityProvidenceUSA

Personalised recommendations