Skip to main content

Platelet Response in Relation to Metabolism of Inositides and Protein Phosphorylation

  • Chapter
Calcium in Biological Systems

Abstract

In the last few years our work has concentrated on lipid changes associated with platelet responses. We found initially that phosphatidic acid is rapidly formed in thrombin-stimulated platelets due to the breakdown of inositol phospholipids [1]. A specific phospholipase C degrades inositol phospholipids, and the 1,2-diacylglycerol so formed is phosphorylated to phosphatidic acid by 1,2-diacylglycerol kinase. The time course for the formation of phosphatidic acid differs from that for liberation of arachidonic acid from various phospholipids such as phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and also phosphatidic acid by phospholipase A2. This suggested a sequential stimulation of phospholipase C and phospholipases A2 [1,2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lapetina, E.G.; Cuatrecasas, P. Stimulation of phosphatidic acid production in platelets precedes the formation of arachidonate and parallels the release of serotonin. Biochim. Biophys. Acta 573: 394–402, 1979.

    PubMed  CAS  Google Scholar 

  2. Lapetina, E. G. Regulation of arachidonic acid production: Role of phospholipases C and A2. Trends Pharmacol Sci. 3: 115–118, 1982.

    Article  Google Scholar 

  3. Lapetina, E. G.; Billah, M. M.; Cuatrecasas, P. The phosphatidylinositol cycle and the regulation of arach-idonic acid production. Nature (London) 292: 367–369, 1981.

    Article  CAS  Google Scholar 

  4. Lapetina, E. G.; Billah, M. M.; Cuatrecasas, P. The initial action of thrombin on platelets. Conversion of phosphatidylinositol to phosphatidic acid preceding production of arachidonic acid. J. Biol. Chem. 256: 5037–5040, 1981.

    PubMed  CAS  Google Scholar 

  5. Billah, M. M.; Lapetina, E. G. Evidence for multiple metabolic pools of phosphatidylinositol in stimulated platelets. J. Biol. Chem. 257: 11856–11859, 1982.

    PubMed  CAS  Google Scholar 

  6. Lapetina, E. G.; Billah, M. M.; Cuatrecasas, P. Lysophosphatidic acid potentiates the thrombin-induced production of arachidonate metabolites in platelets. J. Biol. Chem. 256: 11984–11987, 1981.

    PubMed  CAS  Google Scholar 

  7. Billah, M. M.; Lapetina, E. G.; Cuatrecasas, P. Phosphatidylinositol-specific phospholipase-C of platelets: Association with 1,2-diacylglycerol-kinase and inhibition by cyclic-AMP. Biochem. Biophys. Res. Commun. 90: 92–98, 1979.

    Article  PubMed  CAS  Google Scholar 

  8. Billah, M. M.; Lapetina, E. G.; Cuatrecasas, P. Phospholipase A2 and phospholipase C activities of platelets: Differential substrate specificity, Ca2+ requirement, pH dependence, and cellular localization. J. Biol. Chem. 255: 10227–10231, 1980.

    PubMed  CAS  Google Scholar 

  9. Billah, M. M.; Lapetina, E. G.; Cuatrecasas, P. Phospholipase A2 activity specific for phosphatidic acid: A possible mechanism for the production of arachidonic acid in platelets. J. Biol. Chem. 256: 5399–5403, 1981.

    PubMed  CAS  Google Scholar 

  10. Billah, M. M.; Lapetina, E. G. Formation of lysophosphatidylinositol in platelets stimulated with thrombin or ionophore A23187. J. Biol. Chem. 257: 5196–5200, 1982.

    PubMed  CAS  Google Scholar 

  11. Billah, M. M.; Lapetina, E. G. Rapid decrease of phosphatidylinositol 4,5-bisphosphate in thrombin-stimulated platelets. J. Biol. Chem. 257: 12705–12708, 1982.

    PubMed  CAS  Google Scholar 

  12. Billah, M. M.; Lapetina, E. G. Degradation of phosphatidylinositol 4,5-bisphosphate is insensitive to Ca2+ - mobilization in stimulated platelets. Biochem. Biophys. Res. Commun. 109: 217–222, 1982.

    Article  PubMed  CAS  Google Scholar 

  13. Billah, M. M.; Lapetina, E. G. Platelet-activating factor stimulates metabolism of phosphoinositides in horse platelets: Possible relationship to Ca2+-mobilization during stimulation. Proc. Natl. Acad. Sci. USA 80: 965–968, 1983.

    Article  PubMed  CAS  Google Scholar 

  14. Siess, W.; Cuatrecasas, P.; Lapetina, E. G. A role for cyclooxygenase products in the formation of phosphatidic acid in platelets: Differential mechanisms of action of thrombin and collagen. J. Biol. Chem. 258: 4683–4686, 1983.

    PubMed  CAS  Google Scholar 

  15. Lapetina, E. G.; Siegel, F. L. Shape change induced in human platelets by platelet activating factor: Correlation with the formation of phosphatidic acid and phosphorylation of a 40,000 dalton protein. J. Biol. Chem. 258: 7241–7244, 1983.

    PubMed  CAS  Google Scholar 

  16. Siess, W.; Siegel, F. L.; Lapetina, E. G. Arachidonic acid stimulates the formation of 1,2-diacylglycerol and phosphatidic acid in human platelets: Degree of phospholipase C activation correlates with protein phosphorylation, platelet shape change, serotonin release and aggregation. J. Biol. Chem. 258: 11236–11242, 1983.

    CAS  Google Scholar 

  17. Lapetina, E. G. Metabolism of inositides and the activation of platelets. Life Sci. 32: 2069–2082, 1983.

    Article  PubMed  CAS  Google Scholar 

  18. Lapetina, E. G.; Siess, W. The role of phosphatidylinositol-specific phospholipase C and phospholipases A2 in platelet responses. Life Sci. 33: 1011–1018, 1983.

    Article  PubMed  CAS  Google Scholar 

  19. Broekman, M. J.; Ward, J. W.; Marcus, A. J. Phospholipid metabolism in stimulated platelets: Changes in phosphatidylinositol, phosphatidic acid and lysophospholipids. J. Clin. Invest. 66: 275–283, 1980.

    Article  PubMed  CAS  Google Scholar 

  20. Lloyd, J. V.; Nishizawa, E. E.; Mustard, J. F. Effect of ADP-induced shape change on incorporation of 32P into platelet phosphatidic acid and mono-, di- and triphosphatidyl inositol. Br. J. Haematol. 25: 77–99, 1973.

    Article  PubMed  CAS  Google Scholar 

  21. Lapetina, E. G. Platelet-activating factor stimulates the phosphatidylinositol cycle: Appearance of phosphatidic acid is associated with the release of serotonin in horse platelets. J. Biol. Chem. 257: 7314–7317, 1982.

    Google Scholar 

  22. Kishimoto, A.; Takai, Y.; Mori, T.; Kikkawa, U.; Nishizuka, Y. Activation of a calcium and phospholipid- dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover. J. Biol. Chem. 255: 2273–2276, 1980.

    PubMed  CAS  Google Scholar 

  23. Sano, K.; Takai, Y.; Yamanishi, J.; Nishizuka, Y. A role of calcium-activated phospholipid-dependent protein kinase in human platelet activation. J. Biol. Chem. 258: 2010–2013, 1983.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Lapetina, E.G., Siess, W. (1985). Platelet Response in Relation to Metabolism of Inositides and Protein Phosphorylation. In: Rubin, R.P., Weiss, G.B., Putney, J.W. (eds) Calcium in Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2377-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2377-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9453-5

  • Online ISBN: 978-1-4613-2377-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics