Calcium and Myogenic or Stretch-Dependent Vascular Tone

  • John A. Bevan
  • Joyce J. Hwa
  • Mary P. Owen
  • Raymond J. Winquist


Peripheral vascular bed resistance and capacitance is related not only to the architecture and passive physical properties (both relatively static components) of the bed, but also to the active vascular tone of its component blood vessels. This tone may be extrinsic or intrinsic in origin. Extrinsic tone results from influences that originate outside the smooth muscle cells, such as circulating vasoactive substances and locally released material from such cellular elements as neurons, mast cells, and platelets. Intrinsic tone, on the other hand, is considered to originate from within the smooth muscle cells themselves. This may not be a useful classification since all evidence suggests that myogenic (intrinsic) tone appears in response to stretch. Perhaps a classification of tone based on its primary cause would be more satisfactory.


Vascular Smooth Muscle American Physiological Society Calcium Entry Blocker Myogenic Response Pacinian Corpuscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bayliss, W. M. On the local reaction of the arterial wall to changes of internal pressureJ. Physiol. (London) 28: 220–231, 1902.Google Scholar
  2. 2.
    Bevan, J. A. Transient responses of rabbit cerebral blood vessels to norepinephrine: Correlation with intrinsic myogenic toneCirc. Res 45: 556–572, 1979.Google Scholar
  3. 3.
    Bevan, J. A. The selective action of diltiazem on cerebral vascular smooth muscle in the rabbit: Antagonism of extrinsic, but not intrinsic, maintained toneAm. J. Cardiol 49: 519–524, 1982.PubMedCrossRefGoogle Scholar
  4. 4.
    Bevan, J. A.; Bevan, R. D.; Duckies, S. P. Adrenergic regulation of vascular smooth muscle. In: Handbook of Physiology, Section 2, The Cardiovascular System, Volume 2, Vascular Smooth Muscle, D. F. Bohr, A. P. Somlyo, and H. V. Sparks, Jr., eds., Baltimore, American Physiological Society, 1980, pp. 515–566.Google Scholar
  5. 5.
    Bevan, J. A.; Bevan, R. D.; Hwa, J. J.; Owen, M. P.; Tayo, F. M.; Winquist, R. J. Calcium, extrinsic and intrinsic (myogenic) vascular tone. In: Calcium Modulators, Symposia of the Giovanni Lorenzini Foundation, Volume 15, T. Godfraind, A. Albertini, and R. Paoletti, eds., Amsterdam, Elsevier/North-Holland, 1982, pp. 125–128.Google Scholar
  6. 6.
    Bevan, J. A.; McCalden, T. A.; Rapoport, R. M. Receptor-activated calcium mechanisms and their antoganism in cerebrovascular muscle. In: New Perspectives on Calcium Antagonists, G. B. Weiss, ed., Baltimore, Williams & Wilkins, 1981, pp. 123–129.Google Scholar
  7. 7.
    Borgstrom, P.; Grande, P.-O. Myogenic microvascular responses to change of transmural pressure: A mathematical approachActa Physiol. Scand 106: 411–423, 1979.PubMedCrossRefGoogle Scholar
  8. 8.
    Folkow, B. Description of the myogenic hypothesisCirc. Res 15 (Suppl. 1): 279–287, 1964.PubMedGoogle Scholar
  9. 9.
    Grande, P.-O.; Mellander, S. Characteristics of static and dynamic regulatory mechanisms in myogenic microvascular controlActa Physiol. Scand 102: 231–245, 1978.PubMedCrossRefGoogle Scholar
  10. 10.
    Haggendal, J.; Harley, L. H.; Saltin, B. Arterial noradrenaline concentration during exercise in relation to the relative work levelsScand. J. Clin. Lab. Invest 26: 337–342, 1970.PubMedCrossRefGoogle Scholar
  11. 11.
    Ishiko, N.; Loewenstein, W. R. Effects of temperature on the generator and action potentials of a sense organJ. Gen. Physiol 45: 105–124, 1962.CrossRefGoogle Scholar
  12. 12.
    Johansson, B. Processes involved in vascular smooth muscle contraction and relaxation. Arthur C. Corcoran memorial lectureCirc. Res 43 (Suppl. l): 14–20, 1978.Google Scholar
  13. 13.
    Johansson, B.; Bohr, D. F. Rhythmic activity in smooth muscle from small subcutaneous arteriesAm. J. Physiol 210: 801–806, 1966.PubMedGoogle Scholar
  14. 14.
    Johansson, B.; Mellander, S. Static and dynamic components in the vascular myogenic response to passive changes in length as revealed by electrical and mechanical recordings from the rat portal veinCirc. Res 36: 76–83, 1975.PubMedGoogle Scholar
  15. 15.
    Johansson, B.; Somlyo, A. P. Electrophysiology and excitation-contraction coupling. In: Handbook of Physiology, Section 2, The Cardiovascular System, Volume 2, Vascular Smooth Muscle, D. F. Bohr, A. P. Somlyo, and H. V. Sparks, Jr., eds., Baltimore, American Physiological Society, 1980, pp. 301–323.Google Scholar
  16. 16.
    Johnson, P. C. Review of previous studies and current theories of autoregulationCirc. Res 15 (Suppl. 1): 2–9, 1964.PubMedGoogle Scholar
  17. 17.
    Johnson, P. C. The myogenic response. In: Handbook of Physiology, Section 2, The Cardiovascular System, Volume 2, Vascular Smooth Muscle, D. F. Bohr, A. P. Somlyo, and H. V. Sparks, Jr., eds., Baltimore, American Physiological Society, 1980, pp. 409–442.Google Scholar
  18. 18.
    Johnson, P. C.; Intaglietta, M. Contributions of pressure and flow sensitivity to autoregulation in mesenteric arteriolesAm. J. Physiol 231: 1686–1698, 1976.PubMedGoogle Scholar
  19. 19.
    Johnson, P. C.; Wayland, H. Regulation of blood flow in single capillariesAm. J. Physiol 212: 1405–1415, 1967.PubMedGoogle Scholar
  20. 20.
    Kontos, H. A.; Wei, E. P.; Navari, R. M.; Levasseur, J. E.; Rosenblum, W. I.; Patterson, J. L., Jr. Responses of cerebral arteries and arterioles to acute hypotension and hypertensionAm. J. Physiol 23: H371–H383, 1978.Google Scholar
  21. 21.
    Ladbrooke, B. D.: Williams, R. M.; Chapman, D. Studies on lecithin-cholesterol-water by differential scanning calorimetry and X-ray diffractionBiochim. Biophys. Acta 150: 333–340, 1968.PubMedCrossRefGoogle Scholar
  22. 22.
    Loewenstein, W. R. (ed.) Mechano-electric transduction in the Pacinian corpuscle: Initiation of sensory impulses in mechanoreceptors. In: Principles of Receptor Physiology, Berlin, Springer-Verlag, 1971, pp. 269–290. In: Handbook of Sensory Physiology, Volume I, H. Autrum, R. Jung, W. R. Loewenstein, D. M. MacKay, and H. L. Teuber, eds., Berlin, Springer-Verlag, 1971.Google Scholar
  23. 23.
    McCalden, T. A.; Bevan, J. A. Sources of activator calcium in rabbit basilar arteryAm. J. Physiol 241: H129–H133, 1981.PubMedGoogle Scholar
  24. 24.
    Mellander, S.; Andersson, P.-O.; Afzelius, L.-E.; Hellstrand, P. Neural beta-adrenergic dilatation of the facial vein in man: Possible mechanism in emotional blushingActa Physiol. Scand 114: 393–399, 1981.CrossRefGoogle Scholar
  25. 25.
    Overath, P.; Shairer, H. U.; Stoffel, W. Correlation of in vivo and in vitro phase transitions of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. USA 67: 606–614, 1970.CrossRefGoogle Scholar
  26. 26.
    Owen, M. P.; Walmsley, J. G.; Mason, M. F.; Bevan, R. D.; Bevan, J. A. Adrenergic control in three artery segments of diminishing diameter in the rabbit earAm. J. Physiol 245: H320–H326, 1983.PubMedGoogle Scholar
  27. 27.
    Pegram, B. L.; Bevan, R. D.; Bevan, J. A. Facial vein of the rabbit: Neurogenic vasodilation mediated by beta- adrenergic receptorsCirc. Res 39: 854–860, 1976.PubMedGoogle Scholar
  28. 28.
    Prehn, J. L.; Bevan, J. A. Facial vein of the rabbit: Intracellularly recorded hyperpolarization of smooth muscle cells induced by beta-adrenergic receptor stimulationCirc. Res 52: 465–470, 1983.PubMedGoogle Scholar
  29. 29.
    Reinert, J. C.; Steim, J. M. Calorimetric detection of a membrane-lipid phase transition in living cellsScience 168: 1580–1582, 1970.PubMedCrossRefGoogle Scholar
  30. 30.
    Sparks, H. V., Jr. Effect of quick stretch on isolated vascular smooth muscleCirc. Res. Suppl 1: 1254–1260, 1964.Google Scholar
  31. 31.
    Speden, R. M. The maintenance of arterial constriction at different transmural pressuresJ. Physiol. (London) 229: 361–381, 1973.Google Scholar
  32. 32.
    Tayo, F. M.; Bevan, J. A. Resistance of the rabbit renal artery to calcium withdrawal and calcium entry blockers. Personal communication.Google Scholar
  33. 33.
    Terzuolo, C. A.; Washizu, Y. Relation between stimulus strength, generator potential and impulse frequency in stretch receptor of Crustacea. J. Neurophysiol 25: 56–66, 1962.Google Scholar
  34. 34.
    Towart, R. The selective inhibition of serotonin-induced contractions of rabbit cerebral vascular smooth muscle by calcium-antagonistic dihydropyridinesCirc. Res 48: 650–657, 1981.PubMedGoogle Scholar
  35. 35.
    Trauble, H.; Sackmann, E. Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. III. Structure of a steroid-lecithin system below and above the lipid-phase transitionJ. Am. Chem. Soc 94: 4499–4510, 1972.PubMedCrossRefGoogle Scholar
  36. 36.
    Uchida, E.; Bohr, D. F. Myogenic tone in isolated perfused resistance vessels from ratsEur. J. Physiol 216: 1343–1350, 1969.Google Scholar
  37. 37.
    Vanhoutte, P. M. Physical factors of regulation. In: Handbook of Physiology, Section 2, The Cardiovascular System, Volume 2, Vascular Smooth Muscle, D. F. Bohr, A. P. Somlyo, and H. V. Sparks, Jr., eds., Baltimore, American Physiological Society, 1980, pp. 443–474.Google Scholar
  38. 38.
    Vanhoutte, P. M.; Lorenz, R. R. Effect of temperature on reactivity of saphenous, mesenteric, and femoral veins of the dogAm. J. Physiol 218: 1746–1750, 1970.PubMedGoogle Scholar
  39. 39.
    Van Neuten, J. M.; Vanhoutte, P. M. Calcium entry blockers and vascular smooth muscle heterogeneityFed. Proc 40: 2862–2865, 1981.Google Scholar
  40. 40.
    Winquist, R. J. Intrinsic myogenic tone and the adrenergic responses of the rabbit facial veinPh.D. doctoral dissertation, 1979.Google Scholar
  41. 41.
    Winquist, R. J.; Baskin, E. P. Calcium translocation through channels resistant to organic calcium entry blockers in a rabbit veinAm. J. Physiol 245:H1024-H1030, 1983.Google Scholar
  42. 42.
    Winquist, R. J.; Bevan, J. A. Temperature sensitivity of tone in the rabbit facial vein: Myogenic mechanism for cranial thermoregulationScience 207: 1001–1002, 1980.PubMedCrossRefGoogle Scholar
  43. 43.
    Winquist, R. J.; Bevan, J. A. In vitro model of maintained myogenic vascular toneBlood Vessels 18:134–138, 1981.Google Scholar
  44. 44.
    Zaitev, N. D. Development of neural elements in the umbilical cordArkh. Anat. Gistol. Embriol 37: 81–88, 1959.Google Scholar
  45. 45.
    Zelcer, E.; Sperelakis, N. Spontaneous electrical activity in pressurized small mesenteric arteriesBlood Vessels 19: 301–310, 1982.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • John A. Bevan
    • 1
  • Joyce J. Hwa
    • 1
  • Mary P. Owen
    • 1
  • Raymond J. Winquist
    • 2
  1. 1.Department of Pharmacology, School of MedicineUniversity of VermontBurlingtonUSA
  2. 2.Cardiovascular PharmacologyMerck Sharp & Dohme Research LaboratoriesWest PointUSA

Personalised recommendations