Skip to main content

Calcium Both Activates and Inactivates Calcium Release from Cardiac Sarcoplasmic Reticulum

  • Chapter
Calcium in Biological Systems

Abstract

Ringer reported that ventricular contraction ceases within 20 min in the presence of a Ca2 + - free saline solution and is restored by the addition of a Ca2+ salt [30]. Although this most frequently quoted article does not indicate the animal species from which the ventricle was taken, a previous paper indicated that the frog ventricle was used [29]. These articles by Ringer have been widely quoted to demonstrate the importance of transsarcolemmal Ca2 + influx in controlling cardiac contraction, not only in the frog ventricular tissue but in mammalian cardiac tissue as well. Repeating Ringer’s experiments on small trabeculae from the frog ventricle, but with observation under the high-power microscope, confirmed Ringer’s findings. Not only was contraction abolished within 2-3 min by Ca2+ removal, but microscopic examination found the preparation to be completely quiescent. In contrast, when the experiments were done in a mammalian (e. g., adult rat) ventricular tissue, Ca2+ removal resulted in an almost complete abolition of the contraction detected from the ends of the trabecula with a highly sensitive transducer but observation under the microscope showed localized cyclic contractions. This very prominent but desynchronized contractile behavior persisted for many hours in a Ca2 + -free solution (A. Fabiato, unpublished observations). This observation is one of many pieces of evidence suggesting that, in addition to the transsarcolemmal Ca2+ influx, an intracellular Ca2+ store participates in the excitation- contraction coupling of the adult mammalian cardiac tissue. Other experiments have demonstrated that the Ca2+ store is located in the sarcoplasmic reticulum (SR) [7,15].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, D. G.; Blinks, J. R. The interpretation of light signals from aequorin-injected skeletal and cardiac muscle cells: A new method of calibration. In: Detection and Measurement of Free Ca 2+ in Cells, C. C. Ashley and A. K. Campbell, eds., Amsterdam, Elsevier/North-Holland, 1979, pp. 159–174.

    Google Scholar 

  2. Aronson, R. S.; Capasso, J. M. Negative inotropic effect of elevated extracellular calcium in rat myocardium. J. Moi Cell. Cardiol. 12: 1305–1309, 1980.

    Article  CAS  Google Scholar 

  3. Ashcroft, F. M.; Stanfield, P. R. Calcium dependence of the inactivation of calcium currents in skeletal muscle fibers of an insect. Science 213: 224–226, 1981.

    Article  PubMed  CAS  Google Scholar 

  4. Bianchi, C. P.; Shanes, A. M. Calcium influx in skeletal muscle at rest, during activity, and during potassium contracture. J. Gen. Physiol. 42: 803–815, 1959.

    Article  PubMed  CAS  Google Scholar 

  5. Brehm, P.; Eckert, R. Calcium entry leads to inactivation of calcium channel in Paramecium. Science 202: 1203–1206, 1978.

    Article  PubMed  CAS  Google Scholar 

  6. Brown, A. M.; Morimoto, K.; Tsuda, Y.; Wilson, D. L. Calcium current-dependent and voltage-dependent inactivation of calcium channels in Helix aspersa. J. Physiol. (London) 320:193–218, 1981.

    Google Scholar 

  7. Chapman, R. A. Excitation-contraction coupling in cardiac muscle. Prog. Biophys. Mol. Biol. 35:1–52, 1979.

    Article  Google Scholar 

  8. Chiesi, M.; Ho, M. M.; Inesi, G.; Somlyo, A. V.; Somlyo, A. P. Primary role of sarcoplasmic reticulum in phasic contractile activation of cardiac myocytes with shunted myolemma. J. Cell Biol. 91:728–742, 1981.

    Article  PubMed  CAS  Google Scholar 

  9. Chiesi, M.; Inesi, G. The use of quench reagents for resolution of single transport cycles in sarcoplasmic reticulum. J. Biol. Chem. 254:10370–10377, 1979.

    PubMed  CAS  Google Scholar 

  10. Costantin, L. L.; Taylor, S. R. Graded activation in frog muscle fibers. J. Gen. Physiol. 61:424–443, 1973.

    Article  PubMed  CAS  Google Scholar 

  11. Endo, M.; Tanaka, M.; Ogawa, Y. Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature (London) 228:34–36, 1970.

    Article  CAS  Google Scholar 

  12. Fabiato, A. Myoplasmic free calcium concentration reached during the twitch of an intact isolated cardiac cell and during calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned cardiac cell from the adult rat or rabbit ventricle. J. Gen. Physiol 78: 457–497, 1981.

    Article  PubMed  CAS  Google Scholar 

  13. Fabiato, A. Calcium release in skinned cardiac cells: Variations with species, tissues, and development. Fed. Proc. 41:2238–2244, 1982.

    Google Scholar 

  14. Fabiato, A. Fluorescence and differential light absorption recordings with calcium probes and potential- sensitive dyes in skinned cardiac cells. Can. J. Physiol. Pharmacol. 60:556–567, 1982.

    Article  Google Scholar 

  15. Fabiato, A. Calcium-induced release of calcium from the cardiac sarcoplasmic 5 reticulum. Am. J. Physiol. 245:C1–C14, 1983.

    Google Scholar 

  16. Fabiato, A.; Fabiato, F. Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J. Physiol. (London) 249:469–495, 1975.

    Google Scholar 

  17. Fabiato, A.; Fabiato, F. Use of chlorotetracycline fluorescence to demonstrate Ca2 + -induced release of Ca2 + from the sarcoplasmic reticulum of skinned cardiac cells. Nature (London) 281:146–148, 1979.

    Article  Google Scholar 

  18. Ford, L. E.; Podolsky, R. J. Regenerative calcium release within muscle cells. Science 167:58–59, 1970.

    Article  Google Scholar 

  19. . Ford, L. E.; Podolsky, R. J. Calcium uptake and force development by skinned muscle fibres in EGTA buffered solutions. J. Physiol. (London) 223: 1–19, 1972.

    Google Scholar 

  20. Ford, L. E.; Podolsky, R. J. Intracellular calcium movements in skinned muscle fibres. J. Physiol. (London) 223:21–33, 1972.

    Google Scholar 

  21. Frank, G. B. The current view of the source of trigger calcium in excitation-contraction coupling in vertebrate skeletal muscle. Biochem. Pharmacol. 29:2399–2406, 1980.

    Article  PubMed  CAS  Google Scholar 

  22. Hasselbach, W.; Koenig, V. Low affinity calcium binding sites of the calcium transport ATPase of sarcoplasmic reticulum membranes. Z. Naturforsch. Ted C 35:1012–1018, 1980.

    Google Scholar 

  23. Hodgkin, A. L.; Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London) 117:500–544, 1952.

    Google Scholar 

  24. Isenberg, G.; Klockner, U. Calcium currents of isolated bovine ventricular myocytes are fast and of large amplitude. Pfluegers Arch. 395:30–41, 1982.

    Google Scholar 

  25. Kass, R. S.; Scheuer, T. Slow inactivation of calcium channels in the cardiac Purkinje fiber. J. Mol. Cell. Cardiol. 14:615–618, 1982.

    Article  PubMed  CAS  Google Scholar 

  26. Marban, E.; Tsien, R. W. Is the slow inward calcium current of heart muscle inactivated by calcium? Biophys. J 33:143a, 1981.

    Google Scholar 

  27. Marban, E.; Tsien, R. W. Is the slow inward calcium current of heart muscle inactivated by calcium? Biophys. J. 33:143a, 1981.

    Google Scholar 

  28. Ridgway, E. B.; Snow, A. E. Effects of EGTA on aequorin luminescence. Biophys. J. 41:244a, 1983.

    Article  Google Scholar 

  29. Ringer, S. Concerning the influence of season and of temperature on the action and on the antagonisms of drugs. J. Physiol. (London) 3:115–124, 1882.

    Google Scholar 

  30. Ringer, S. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J. Physiol. (London) 4:29–42, 1883.

    Google Scholar 

  31. Sommer, J. R.; Johnson, E. A. Ultrastructure of cardiac muscle. In: Handbook of Physiology Section 2, The Cardiovascular System, Volume I, The Heart, R. M. Berne, N. Sperelakis, and S. R. Geiger, eds., Bethesda, American Physiological Society, 1979, pp. 113–186.

    Google Scholar 

  32. Tillotson, D. Inactivation of Ca conductance dependent on entry of Ca ions in molluscan neurons. Proc. Natl. Acad. Sci. USA 76:1497–1500, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Fabiato, A. (1985). Calcium Both Activates and Inactivates Calcium Release from Cardiac Sarcoplasmic Reticulum. In: Rubin, R.P., Weiss, G.B., Putney, J.W. (eds) Calcium in Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2377-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2377-8_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9453-5

  • Online ISBN: 978-1-4613-2377-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics