Electrophysiological Evidence for Increased Calcium-Mediated Potassium Conductance by Low-Dose Sedative-Hypnotic Drugs

  • P. L. Carlen
  • N. Gurevich
  • M. O’Beirne


In this chapter evidence is presented favoring the hypothesis that low-dose actions (i. e., mild sedation and anxiolysis) of ethanol, a water-soluble benzodiazepine (midazolam), and pentobarbital are due to enhanced calcium-mediated potassium conductance (Ca-gK). This hypothesis, which developed from results of electrophysiological experiments recording intracellularly from CA1 and CA3 cells in mammalian hippocampal slices, centers around the fact that injection of Ca2+ into excitable cells induces a membrane hyperpolarization by a selective increase in gK [20,24,30,32,33]. Physiologically, Ca-gK is usually triggered by a depolarization-induced influx of Ca2+ from the surrounding medium. On the other hand, persistently raised intracellular free Ca2+ concentration, [Ca2+]i, will actually reduce the depolarization-induced inward Ca2+ current [14,16,20,24,37,43]. However, it was shown in voltage-clamped dorid neurons that the intraneuronal free [Ca2+]i and not the amount of the Ca2+ current is related to the degree of activation of the Ca-gK [15]. Therefore, Ca-gK could be increased even though the inward Ca2+ current is reduced if the source of increased [Ca2+]i is intracellular. The exact way that Ca-gK is activated by a depolarizing current pulse or by injected Ca2+ is unclear. We have used the size of the Ca2+ spikes evoked in neurons perfused with tetrodotoxin (TTX), which blocks Na+-dependent action potentials, as an indirect monitor of the free [Ca2+]i.


Hippocampal Slice Stratum Radiatum Locus Coeruleus Neuron Stratum Oriens Hippocampal Slice Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alger, B. E.; Nicoll, R. A. Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied invito. J. Physiol (London) 328: 105 – 123, 1982.Google Scholar
  2. 2.
    Alger, B. E.; Nicoll, R. A. Pharmacological evidence for two kinds of GAB A receptor on rat hippocampal pyramidal cells studied in-vitro. J. Physiol (London) 328: 125 – 141, 1982.Google Scholar
  3. 3.
    Baker, P. F.; Schlaepfer, W. W. Uptake and binding of calcium by axoplasm isolated from giant axons of LOLIGO and MYXICOLA. J. Physiol. (London) 276: 103 – 125, 1978.Google Scholar
  4. 4.
    Blaustein, M. P.; McGraw, C. F.; Somlyo, A. V.; Schweitzer, E. S. How is the cytoplasmic calcium concentration controlled in nerve terminals? J. Physiol. (Paris) 76:459—470, 1980.Google Scholar
  5. 5.
    Blaustein, M. P.; Nelson, M. T. Sodium-calcium exchange: Its role in the regulation of cell calcium. In: Calcium Transport across Biological Membranes, E. Carafoli, ed., New York, Academic Press, 1982, pp.217–236.Google Scholar
  6. 6.
    Braestrup, C.; Squires, R. F. Specific benzodiazepine receptors in rat brain characterized by high-affinity [3H]diazepam-binding. Proc. Natl. Acad. Sci. USA 74:3805–3809, 1977.Google Scholar
  7. 7.
    Brinley, F. J.,Jr. Regulation of intracellular calcium in squid ionsFed. Proc 39: 2778–2782, 1980.PubMedGoogle Scholar
  8. 8.
    Carlen, P. L.; Corrigall, W. A. Ethanol tolerance measured electrophysiologically in hippocampal slices and not in neuromuscular junctions from chronically ethanol-fed ratsNeurosci. Lett 17: 95–100, 1980.PubMedCrossRefGoogle Scholar
  9. 9.
    Carlen, P. L.; Gurevich, N., Durand, D. Ethanol in low doses augments calcium mediated mechanisms measured intracellularly in hippocampal neuronsScience 215: 306 – 309, 1982.PubMedCrossRefGoogle Scholar
  10. 10.
    Carlen, P. L.; Gurevich, N.; Pole, P. Low dose benzodiazepine neuronal inhibition: Enhanced Ca++ -mediated K+ conductanceBrain Res 271: 358 –364, 1983.CrossRefGoogle Scholar
  11. 11.
    Carlen, P. L.; Gurevich, N.; Pole, P. The excitatory effects of the specific benzodiazepine antagonist Ro-14-7437 measured intracellularly in CA1 cellsBrain Res 271: 115–119, 1983.PubMedCrossRefGoogle Scholar
  12. 12.
    Dingledine, R.; Dodd, J,; Kelly, J. S. The in-vitro brain slice as a useful neurophysiological preparation for intracellular recordingJ. Neurosci. Methods 2: 323–362, 1980.Google Scholar
  13. 13.
    Durand, D.; Corrigall, W. A.; Kujtan, P.; Carlen, P. L. Effects of low concentrations of ethanol on CA1 hippocampal neurons in vitroCan. J. Physiol. Pharmacol 59: 979–984, 1981.PubMedCrossRefGoogle Scholar
  14. 14.
    Eckert, R.; Ewald, D. Residual calcium ions depress activation of calcium dependent currentScience 216: 730–733, 1982.PubMedCrossRefGoogle Scholar
  15. 15.
    Eckert, R.; Tillotson, D. Potassium activation associated with intraneuronal free calciumScience 200: 437–439, 1978.PubMedCrossRefGoogle Scholar
  16. 16.
    Eckert, R.; Tillotson, D. L. Calcium-mediated inactivation of the calcium conductance in caesium-loaded giant neurones of Aplysia californicaJ. Physiol. (London) 314: 265–280, 1981.Google Scholar
  17. 17.
    Garattini, S.; Mussini, E.; Marucci, F.; Guaitani, A. Metabolic studies on benzodiazepines in various animal species. In: The Benzodiazepines, S. Garattini, E. Mussini, and L. O. Randall, eds., New York, Raven Press, 1973, pp. 75–97.Google Scholar
  18. 18.
    Goldstein, D. B.; Chin, J. H. Interaction of ethanol with biological membranesFed. Proc 40: 2073–2076, 1981.PubMedGoogle Scholar
  19. 19.
    Gustafasson, B.; Wigstrom, H. Evidence for two types of afterhyperpolarizations in CA1 pyramidal cells in the hippocampusBrain Res 206: 462–468, 1981.CrossRefGoogle Scholar
  20. 20.
    Hagiwara, S.; Byerly, L. Calcium ChannelsAnnu. Rev. Neurosci 4: 69–125, 1981.PubMedCrossRefGoogle Scholar
  21. 21.
    Harris, R. A. Psychoactive drugs as antagonists of actions of calcium. In: Calcium Antagonists, G. Weiss, ed., Bethesda, American Physiological Society, pp. 223–231.Google Scholar
  22. 22.
    Harris, R. A. Ethanol and pentobarbital inhibition of intrasynaptosomal sequestration of calciumBiochem. Pharmacol 30: 3209–3215, 1981.PubMedCrossRefGoogle Scholar
  23. 23.
    Heyer, E. J.; MacDonald, R. L. Barbiturate reduction of calcium-dependent action potentials: Correlation with anesthetic actionBrain Res 236: 157–171, 1982.PubMedCrossRefGoogle Scholar
  24. 24.
    Hofmeier, G.; Lux, H. D. The time courses of intracellular free calcium and related electrical effects after injection of CaCl2 into neurons of the snail, Helix pomatia. Pfluegers Arch 391: 242–217, 1981.CrossRefGoogle Scholar
  25. 25.
    Hotson, J. R.; Prince, D. A. A calcium-activated hyperpolarization follows repetitive firing in hippocampal neuronsJ. Neurophysiol 43: 409–419, 1980.PubMedGoogle Scholar
  26. 26.
    Jahnsen, H.; Laursen, A. M. The effects of benzodiazepine on the hyperpolarizing and the depolarizing responses of hippocampal cells to GABABrain Res 207:214-217, 1981.PubMedCrossRefGoogle Scholar
  27. 27.
    Kanto, J.; Kangas, L.; Siirotola, T. Cerebrospinal-fluid concentrations of diazepam and its metabolites in manActa. Pharmacol. Toxicol 36: 328–334, 1975.CrossRefGoogle Scholar
  28. 28.
    Klotz, U. Effect of age on levels of diazepam in plasma and brain of ratsNaunyn-Schmiedeberg’s Arch. Pharmacol 307: 167–169, 1979.CrossRefGoogle Scholar
  29. 29.
    Krnjevic, K. Excitable membranes and anesthetics. In: Cellular Biology and Toxicity of Anesthetics, B. R. Fink, ed., Baltimore, Williams,Wilkins, 1972, pp. 3–9.Google Scholar
  30. 30.
    Krnjevic, K.; Lisiewicz, A. Injections of calcium-ions into spinal motoneuronesJ. Physiol. (London) 225: 363–390, 1972.Google Scholar
  31. 31.
    Lehninger, A. L. Mitochondria and calcium ion in transportBiochem. J 119: 129–138, 1970.PubMedGoogle Scholar
  32. 32.
    Meech, R. W. Intracellular calcium injection causes increased potassium conductance in Aplysia nerve cellsComp. Biochem. Physiol. A 42: 493–499, 1972.CrossRefGoogle Scholar
  33. 33.
    Meech, R. W. The sensitivity of Helix aspersa neurones to injected calcium ions. J. Physiol. (London) 237: 259 – 277, 1974.Google Scholar
  34. 34.
    Nestoros, J. N. Ethanol specifically potentiates GABA-mediated neurotransmission in feline cerebral cortex. Science 209: 708 – 710, 1980.PubMedCrossRefGoogle Scholar
  35. 35.
    Nicoll, R. A.; Alger, B. E. Synaptic excitation may activate a calcium dependent potassium conductance in hippocampal pyramidal cells. Science 212: 957 – 959, 1981.PubMedCrossRefGoogle Scholar
  36. 36.
    Nicoll, R. A.; Madison, D. V. General anesthetics hyperpolarize neurons in the vertebrate central nervous system. Science 217: 1055 – 1057, 1982.PubMedCrossRefGoogle Scholar
  37. 37.
    Plant, T. D.; Standen, N. B. Calcium current inactivation in identified neurones of Helix aspersa. J. Physiol. (London) 321: 273 – 285, 1981.Google Scholar
  38. 38.
    Schatzmann, H. J.; Burgin; H. Calcium in human red blood cells. Ann. N.Y. Acad. Sci. 307: 125 – 147, 1978.PubMedCrossRefGoogle Scholar
  39. 39.
    Schwartzkroin, P. A.; Prince, D. A. Effects of TEA on hippocampal neurons. Brain Res. 185: 169 – 181, 1980.PubMedCrossRefGoogle Scholar
  40. 40.
    Schwartzkroin, P. A.; Slawsky, M. Probable calcium spikes in hippocampal neurons. Brain Res. 135:157–161, 1977.Google Scholar
  41. 41.
    Seeman, P.: Chau, M.; Goldberg, M.; Sauks, T.; Sax, L. The binding of Ca2+ to the cell membrane by volatile anesthetics (alcohols, acetone, ether) which induce sensitization of nerve or muscle. Biochim. Biophys. Acta 225: 185 – 193, 1971.PubMedCrossRefGoogle Scholar
  42. 42.
    Shefner, S. A.; Chiu, T. H.; Anderson, E. G. Intracellular measurements of ethanol effects on rat locus coeruleus neurons in a brain slice preparation. Soc. Neurosci. Abstr. 8: 651, 1982.Google Scholar
  43. 43.
    Standen, N. B. Ca channel inactivation by intracellular Ca injection into Helix neurones. Nature (London) 293: 158 – 159, 1981.CrossRefGoogle Scholar
  44. 44.
    Yamamoto, H. A.; Harris, R. A. Calcium-dependent efflux and ethanol intoxication: Studies of human red blood cells and rodent brain synaptosomes. Eur. J. Pharmacol. 88: 357 – 363, 1983.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • P. L. Carlen
    • 1
    • 2
  • N. Gurevich
    • 1
    • 2
  • M. O’Beirne
    • 1
    • 2
  1. 1.Addiction Research Foundation Clinical Institute, Playfair Neuroscience UnitToronto Western HospitalTorontoCanada
  2. 2.Departments of Medicine (Neurology), Physiology, and Institute of Medical ScienceUniversity of TorontoTorontoCanada

Personalised recommendations