Skip to main content

Calcium-Activated Potassium Channels in Bullfrog Sympathetic Ganglion Cells

  • Chapter
Calcium in Biological Systems

Abstract

The existence of a calcium activated potassium current (Ic) in the somata of vertebrate sympathetic ganglion cells was postulated to account for the calcium-sensitive spike after-hyperpolarizations present in these cells [19,22,26]. We have studied Ic in bullfrog ganglion cells more directly by using various voltage-clamp techniques, partly in order to understand better the role this current plays in spike repolarization, spike afterhyperpolarization, and spontaneous hyperpolarizations, and partly to define the difference between Ic and the M-current Im [4]. Both Ic and Im are voltage-sensitive potassium currents sensitive to transmitters, the former being activated by internal calcium and the latter inactivated by external acetylcholine. Despite these superficial similarities, it turns out that the two currents have virtually nothing in common.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, P. R. Kinetics of agonist conductance changes during hyperpolarization at frog end-plates. Br. J. Pharmacol 53: 308–310, 1975.

    PubMed  CAS  Google Scholar 

  2. Adams, P. R. The calcium current of a vertebrate neurone. In: Advances in Physiological Sciences, Volume 4, J. Salanki, ed., Proc. 28th Int. Congre. Physiol. Sci. Budapest, Akademiai Kiado, 1981.

    Google Scholar 

  3. Adams, P. R. Activation of calcium current in bullfrog sympathetic neurones. J. Physiol. (London) Submitted for publication.

    Google Scholar 

  4. Adams, P. R.; Brown, D. A.; Constanti, A. M-currents and other potassium currents in bullfrog sympathetic neurones. J. Physiol. (London) 330: 537–572, 1982.

    CAS  Google Scholar 

  5. Adams, P. R.; Brown, D. A.; Constanti, A. Voltage clamp analysis of membrane currents underlying repetitive firing of bullfrog sympathetic neurons. In: Physiology and Pharmacology of Epileptogenic Phenomena, M. R. Klee, ed., New York, Raven Press, 1982.

    Google Scholar 

  6. Adams, P. R.; Constanti, A.; Brown, D. A.; Clark, R. B. Intracellular Ca2+ activates a fast voltage-sensitive K+ -current in vertebrate sympathetic neurones. Nature (London) 296: 746–749, 1982.

    Article  CAS  Google Scholar 

  7. Barrett, J. N.; Magleby, K. L.; Pallotta, B. S. Properties of single calcium-activated potassium channels in cultured rat muscle. J. Physiol. (London) 331: 211–230, 1982.

    CAS  Google Scholar 

  8. Brown, D. A.; Constanti, A.; Adams, P. R. Calcium-dependence of a component of transient outward current in bullfrog ganglion cells. Soc. Neurosci. Abstr 8: 252, 1982.

    Google Scholar 

  9. Hartzell, H. C.; Kuffler, S. W.; Stickgold, R.; Yoshikami, D. Synaptic excitation and inhibition resulting from direct actions of acetylcholine on two types of chemoreceptors on individual amphibian parasympathetic neurones. J. Physiol. (London) 271: 817–846, 1977.

    CAS  Google Scholar 

  10. Henkart, M. Indentification and function of intracellular calcium stores in axons and cell bodies of neurons. Fed. Proc. 39: 2783 - 2789, 1980.

    PubMed  CAS  Google Scholar 

  11. Henkart, M.; Landis, D. M. D.; Reese, T. S. Similarity of junctions between plasma membranes and endoplasmic reticulum in muscle and neurons. J. Cell Biol 70: 388–347, 1976.

    Article  Google Scholar 

  12. Hermann, A.; Hartung, K. Noise and relaxation measurements of the Ca2+ activated K+ current in Helix neurones. Pfluegers Arch. 393: 254 - 261, 1982.

    Article  CAS  Google Scholar 

  13. Latorre, R.; Vergara, C.; Hidalgo, C. Reconstitution in planar lipid bilayers of a Ca2+ -dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle, Proc. Natl. Acad. Sci. USA 79: 805–809, 1982.

    Article  PubMed  CAS  Google Scholar 

  14. Lee, K. S.; Tsien, R. W. Reversal of current through calcium channels in dialysed single heart cells. Nature (London) 297: 498–501, 1982.

    Article  CAS  Google Scholar 

  15. MacDermott, A. B.; Weight, F. F. Action potential repolarization may involve a transient Ca2+ -sensitive outward current in a vertebrate neurone. Nature (London) 300: 185 - 188, 1982.

    Article  CAS  Google Scholar 

  16. Madison, D. V.; Nicoll, R. A. Noradrenaline blocks accommodation of pyramidal cell discharge in hippocampus. Nature (London) 299: 636–638, 1982.

    Article  CAS  Google Scholar 

  17. Marty, A. Ca-dependent K channels with large unitary conductance in chromaffin cell membranes. Nature (London) 291: 497–500, 1981.

    Article  CAS  Google Scholar 

  18. Mathers, D. A.; Barker, J. L. Spontaneous hyperpolarizations at the membrane of cultured mouse dorsal root ganglion cells. Brain Res. 211: 451–455, 1981.

    Article  PubMed  CAS  Google Scholar 

  19. McAfee, D. A.; Yarowsky, P. J. Calcium-dependent potentials in the mammalian sympathetic neurone. J. Physiol. (London) 290: 507–523, 1974.

    Google Scholar 

  20. Meech, R. W.; Standen, N. B. Potassium activation in Helix aspersa neurones under voltage clamp: A component mediated by calcium influx. J. Physiol. (London) 249: 211–239, 1975.

    CAS  Google Scholar 

  21. Methfessel, C.; Boheim, G. The gating of single calcium-dependent potassium channels is described by an activation/blockade mechanism. Biophys. Struct. Mech 9: 35–60, 1982.

    Article  PubMed  CAS  Google Scholar 

  22. Minota, S. Calcium ions and the post-tetanic hyperpolarization of bulffrog sympathetic ganglion cells. Jpn. J. Physiol 24: 501–512, 1974.

    CAS  Google Scholar 

  23. Morita, K.; Koketsu, K.; Kuba, K. Oscillation of [Ca2+] linked K+ conductances in bullfrog sympathetic ganglion cell is sensitive to intracelhilar axons. Nature (London) 283: 204–205, 1980.

    Article  CAS  Google Scholar 

  24. Morita, K.; North, R. A.; Tokimasa, T. Muscarinic agonists inactivate potassium conductance of guinea pig myenteric neurones. J. Physiol. (London) 333: 125–139, 1982.

    CAS  Google Scholar 

  25. Neher, E.; Sakmann, B. Voltage-dependence of drug-induced conductance in frog neuromuscular junction. Proc. Natl. Acad. Sci. USA 72: 2140–2144, 1975.

    Article  PubMed  CAS  Google Scholar 

  26. North, R. A. The calcium-dependent slow afterhyperpolarization in myenteric plexus neurones with tetrodotox- in-resistant action potentials. Br. J. Pharmacol 49: 709–711, 1973.

    PubMed  CAS  Google Scholar 

  27. Sheridan, R.; Lester, H. A. Rates and equilibrium at acetylcholine receptor of electrophorus electroplaques: A study of neurally evoked postsynaptic currents and of voltage-jump relaxations. J. Gen. Physiol 70: 187–219, 1977.

    PubMed  CAS  Google Scholar 

  28. Smith, S. J.; MacDermott, A. B.; Weight, F. F. Intracellular calcium transients elicited by synaptic and electrical membrane activation and by theophylline measured in bullfrog neurons using arsenazo III. Soc. Neurosci. Abstr 7: 15, 1981.

    Google Scholar 

  29. Tillotson, D. Inactivation of Ca conductance is dependent on entry of Ca ions in molluscan neurons. Proc. Natl. Acad. Sci. USA 76: 1497–1500, 1979.

    Article  PubMed  CAS  Google Scholar 

  30. Wong, B. S.; Lecar, H.; Adler, M. Single calcium-dependent potassium channels in clonal anterior pituitary cells. Biophys. 7. 39: 313–317, 1982.

    Article  CAS  Google Scholar 

  31. Wong, F. Nature of light-induced conductance changes in ventral photoreceptors of Limulus. Nature (London) 275: 76–79, 1978.

    Article  Google Scholar 

  32. Woolum, J. C.; Gorman, A. L. F. Time dependence of the calcium-activated potassium current. Biophys. J 36: 297–302, 1981.

    Article  PubMed  CAS  Google Scholar 

  33. Yau, K. W.; Lamb, D. A.; Baylor, D. A. Light-induced fluctuations in membrane current of single toad rod outer segments. Nature, (London) 269: 78–80, 1977.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Adams, P.R., Brown, D.A., Constanti, A., Clark, R.B., Satin, L. (1985). Calcium-Activated Potassium Channels in Bullfrog Sympathetic Ganglion Cells. In: Rubin, R.P., Weiss, G.B., Putney, J.W. (eds) Calcium in Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2377-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2377-8_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9453-5

  • Online ISBN: 978-1-4613-2377-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics