Skip to main content

Calcium Ion

A Synarchic and Mercurial But Minatory Messenger

  • Chapter

Abstract

It was almost a century ago when Sidney Ringer demonstrated that extracellular Ca2+ is essential for the normal functioning of the isolated frog heart [19]. Although it was assumed for some time that Ca2+ stabilized the plasma membrane of the heart cell, the key Ca2+ pool in terms of cardiac contractile function is the small pool of free Ca2+ in the cell cytosol, [Ca2++]c. The concentration of Ca2+ in this pool rises during systole and falls during diastole. The rise precedes the contractile response, and the fall precedes the relaxation process. Troponin C has been identified as the calcium receptor component of the contractile protein system [5]. Thus, we have come a long way toward defining the cellular basis of Ca2+ action in the cardiac cell. However, in the past 10–15 years, we have also come to realize that this messenger or coupling function of Ca2+ is not confined to the heart, or other excitable tissues, but is a universal one [17]. Ca2+ serves as a coupling factor or second messenger in the evocation of the specific response of almost every type of differentiated cell by its appropriate extracellular messenger, which may be a hormone, circulating metabolite, or neurotransmitter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akerman, K. D. O.; Nicholls, D. G. Physiological and bioenergetic aspects of mitochondrial calcium transport. Rev. Physiol. Biol. Pharmacol 95: 149–201, 1983.

    Article  Google Scholar 

  2. Barnard, T. Mitochondrial matrix granules, dense particles and the sequestration of calcium by mitochondria. Scanning Electron Microscopy 11: 419–433, 1981.

    Google Scholar 

  3. Blaustein, M. P.; McGraw, C. F.; Somlyo, A. V.; Schweitzer, E. S. How is the cytoplasmic calcium concentration controlled in nerve terminals? J. Physiol. (Paris) 76: 459–470, 1980.

    CAS  Google Scholar 

  4. Borle, A. B. Control, modulation and regulation of cell calcium. Rev. Physiol. Biochem. Pharmacol 90: 13–169, 1981.

    Article  PubMed  CAS  Google Scholar 

  5. Chapman, R. A. Excitation-contraction coupling in cardiac muscle. Prog. Biophys. Mol. Biol 35: 1–52, 1979.

    Article  PubMed  CAS  Google Scholar 

  6. Cheung, W. Y. Calmodulin plays a pivotal role in cellular regulation. Science 207: 19–27, 1980.

    Article  PubMed  CAS  Google Scholar 

  7. Cheung, W. Y.; Lynch, T. J.; Wallace, R. W.; Tallant, E. C. cAMP renders Ca2 + -dependent phosphodiesterase refractory to inhibition by calmodulin-binding protein. J. Biol. Chem 256: 4439–4443, 1981.

    PubMed  CAS  Google Scholar 

  8. Ebashi, S. Excitation-contraction coupling. Annu. Rev. Physiol 38: 293 - 313, 1976.

    Article  CAS  Google Scholar 

  9. Fishkum, G.; Lehninger, A. L. Mitochondrial regulation of intracellular calcium. In: Calcium and Cell Regulation, W. Y. Cheung, ed., New York, Academic Press, 1982, pp. 39–79.

    Google Scholar 

  10. Fleckenstein, A. Drug-induced changes in cardiac energy. Adv. Cardiol 12: 193–197, 1974.

    Google Scholar 

  11. Foreman, J. C.; Mongar, J. L. Calcium and the control of histamine secretion from mast cells. In: Calcium Transport in Contraction and Secretion, E. Carafoli, F. Clementi, W. Drabikowsky, and A. Margreth, eds., Amsterdam, North-Holland, 1975, pp. 175–184.

    Google Scholar 

  12. Hansford, R. G.; Castro, F. Intramitochondrial and extra-mitochondrial free calcium ion concentrations of suspension of heart mitochondria with very low, plausibly physiological, contents of total calcium. J. Bioenerg. Biomembr 14: 171–186, 1982.

    Article  Google Scholar 

  13. Heilbrunn, L. V. Dynamic Aspects of Living, New York, Protoplasm Academic Press, 1956.

    Google Scholar 

  14. Huang, C. Y.; Chau, V.; Chock, P. G.; Wang, J. H.; Sharma, R. F. Mechanism of activation of cyclic nucleotide phosphodiesterase: Requirement of the binding of four Ca2+ to calmodulin for activation. Proc. Natl. Acad. Sci. USA 78: 871–874, 1981.

    Article  PubMed  CAS  Google Scholar 

  15. Klee, C. B. Conformational transition accompanying the binding of Ca2 + to the protein activator of 3′5′-cyclic adenosine monophosphate phosphodiesterase. Biochemistry 16: 1017–1024, 1977.

    Article  PubMed  CAS  Google Scholar 

  16. Rasmussen, H. Cell communication, calcium ion and cyclic adenosine monophosphate. Science 170: 404–412, 1970.

    Article  PubMed  CAS  Google Scholar 

  17. Rasmussen, H. Calcium and cAMP as Synarchic Messengers, New York, Wiley, 1981.

    Google Scholar 

  18. Rasmussen, H.; Waisman, D. M. Modulation of cell function in the calcium messenger system. Rev. Physiol. Biochem. Pharmacol 95: 111–148, 1982.

    Article  Google Scholar 

  19. Ringer, S. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J. Physiol. (London) 4: 29–49, 1883.

    CAS  Google Scholar 

  20. Rubin, R. P. Calcium and Cellular Secretion, New York, Plenum Press, 1982.

    Google Scholar 

  21. Schulz, I. Messenger role of calcium in function of pancreatic acinar cell. Am. J. Physiol 239: 6335–6347, 1980.

    Google Scholar 

  22. Somlyo, A. P.; Somlyo, A. V.; Shuman, H.; Scarpa, A.; Endo, M.; Inesi, G. Mitochondria do not accumulate significant Ca concentrations in normal cells. In: Calcium and Phosphate Transport across Biomembranes, F. Bronner and M. Paterlik, eds., New York, Academic Press, 1981, pp. 87–93.

    Google Scholar 

  23. Sutherland, E. W.; Rail, T. W. Formation of cyclic adenine ribonucleotide by tissue particles. J. Biol. Chem 232: 1065–1076, 1958.

    PubMed  Google Scholar 

  24. Vincenzi, F. F.; Larsen, F. L. The plasma membrane calcium pump: Regulation by a soluble Ca2+ binding protein. Fed. Proc. 39: 2427–2431, 1980.

    PubMed  CAS  Google Scholar 

  25. Williamson, J. R.; Cooper, R. H.; Hoek, J. B. Role of calcium in the hormonal regulation of liver metabolism. Biochim, Biophys. Acta 639: 243–295, 1981.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Rasmussen, H. (1985). Calcium Ion. In: Rubin, R.P., Weiss, G.B., Putney, J.W. (eds) Calcium in Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2377-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2377-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9453-5

  • Online ISBN: 978-1-4613-2377-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics