Calcium and Transmitter Release Modulation by Adenosine Derivatives

  • E. M. Silinsky

Abstract

The currently accepted scheme of evoked transmitter secretion may be summarized as follows (for recent reviews, see [44,46]):

(1) A wave of depolarization (the action potential) invades the nerve terminal and opens voltage-sensitive calcium channels. (2) Extracellular calcium, preequilibrated with the extracellular surface of the nerve terminal membrane, enters the nerve terminal down its concentration gradient through the open calcium channels. (3) Calcium, once near the internal face of the nerve membrane, causes synaptic vesicles with encapsulated neurotransmitter to fuse with the nerve terminal at specific releasing sites. (4) The transmitter contents of the fused vesicles are discharged into the synaptic cleft by exocytosis.

Keywords

Barium Caffeine Acetylcholine Strontium Verapamil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akasu, T.; Hirai, K.; Koketsu, K. Increase of acetylcholine receptor sensitivity by adenosine triphosphate: A novel action of ATP on ACh sensitivityBr. J. Pharmacol. 74: 505–507, 1981.PubMedGoogle Scholar
  2. 2.
    Ariens, E. J. Receptors: From fiction to factTrends Pharmacol. Sci. 1: 11–15, 1979.CrossRefGoogle Scholar
  3. 3.
    Birnbaumer, L.; Iyengar, R. Coupling of receptors to adenylate cyclases. In: Cyclic Nucleotides I: Handbook of Experimental Pharmacology, J. A. Nathanson and J. E. Kebabian, eds., Berlin, Springer-Verlag, 1982, pp. 153–183.Google Scholar
  4. 4.
    Branisteanu, D. D.; Haulica. N. P.; Proca, B.; Nhue, B. G. Adenosine effects upon transmitter release parameters in the Mg2+ -paralyzed neuromuscular junction of the frogNaunyn-Schmiedebergs Arch. Phar- makol 308: 273–279, 1979.CrossRefGoogle Scholar
  5. 5.
    Burnstock, G. Past and current evidence for the purinergic nerve hypothesis. In: Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides, H. P. Baer and G. I. Drummond, eds., New York, Raven Press, 1979, pp. 3–32.Google Scholar
  6. 6.
    Van Calker, D.; Muller, M.; Hamprecht, B. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cellsJ. Neurochem. 33: 999–1005, 1979.PubMedCrossRefGoogle Scholar
  7. 7.
    Clarke, D. A.; Davoll, J., Phillips, F. S.; Brown, B. G. Enzymatic deamination and vasopressor effects of adenosine analoguesJ. Pharmacol. Exp. Ther. 106: 291–302, 1952.PubMedGoogle Scholar
  8. 8.
    Del Castillo, J.; Katz, B. Quantal components of the end-plate potentialJ. Physiol. (London) 124: 560–573, 1954.Google Scholar
  9. 9.
    Dodge, F. A., Jr.; Rahamimoff, R. Cooperative action of Ca ions in transmitter release at the neuromuscular junctionJ. Physiol. (London) 193: 419–432, 1967.Google Scholar
  10. 10.
    Douglas, W. W.; Poisner, A. M. Stimulus-secretion coupling in a neurosecretory organ: The role of calcium in the release of vasopressin from the neurohypophysisJ. Physiol. (London) 172: 1–18, 1964.Google Scholar
  11. 11.
    Douglas, W. W.; Poisner, A. M. Calcium movements in the neurohypophysis of the rat and its relation to the release of vasopressinJ. Physiol. (London) 172: 19–30, 1964.Google Scholar
  12. 12.
    Drapeau, P.; Blaustein, M. P. Initial release of 3H-dopamine from rat striatal synaptosomes: Correlation with calcium entryJ. Neurosci. 3: 703–713, 1983.PubMedGoogle Scholar
  13. 13.
    Dunwiddie, T. V.; Hoffer, B. J. The role of cyclic nucleotides in the nervous system. In: Cyclic Nucleotides II: Handbook of Experimental Pharmacology, J. E. Kebabian and J. A. Nathanson, eds., Berlin, Springer-Verlag, 1982, pp. 389–463.Google Scholar
  14. 14.
    Fredholm, B. B.; Hedqvist, P. Modulation of neurotransmission by purine nucleotides and nucleosidesBiochem. Pharmacol. 29: 1635–1643, 1980.PubMedCrossRefGoogle Scholar
  15. 15.
    Ginsborg, B. L.; Hirst, G. D. S. The effect of adenosine on the release of the transmitter from the phrenic nerve of the ratJ. Physiol. (London) 224: 629–645, 1972.Google Scholar
  16. 16.
    Grupp, G.; Grupp, I. L.; Johnson, C. L.; Matlib, M. A.; Rouslin, W.; Schwartz, A.; Wallick, E. T.; Wang, T.; Wisler, P. Effect of RMI 12,330A, a new inhibitor of adenylate cyclase on myocardial function and subcellular activityBr. J. Pharmacol. 70: 429–442, 1980.PubMedGoogle Scholar
  17. 17.
    Guellaen, G.; Mahu, J. L.; Mavier, P.; Berthelot, P.; Hanoune, J. RMI 12,330A, an inhibitor of adenylate cyclase in rat liverBiochim. Biophys. Acta 484: 465–475, 1977.PubMedGoogle Scholar
  18. Kharasch, E. D.; Mellow, A. M.; Silinsky, E. M. Intracellular magnesium does not antagonize calcium- dependent acetylcholine secretionJ. Physiol. (London) 314: 255–263, 1981.Google Scholar
  19. 19.
    Kuroda, Y. Physiological roles of adenosine derivatives which are released during neurotransmission in mammalian brainJ. Physiol (Paris) 74: 463–470, 1978.Google Scholar
  20. 20.
    Londos, C.; Cooper, D. M. F.; Wolff, J. Subclasses of external adenosine receptorsProc. Natl. Acad. Sci. USA 77: 2551–2554, 1980.PubMedCrossRefGoogle Scholar
  21. 21.
    Londos, C.; Wolff, J. Two distinct adenosine sensitive sites on adenylate cyclaseProc. Natl. Acad. Sci. USA 74: 5482–5486, 1977.PubMedCrossRefGoogle Scholar
  22. 22.
    de Lorenzo, R. J. Calmodulin in neurotransmitter release and synaptic functionFed. Proc. 41: 2265–2272, 1982.Google Scholar
  23. 23.
    McLachlan, E. M.; Martin, A. R. Non-linear summation of end-plate potentials in the frog and mouseJ. Physiol. (London) 311: 307–324, 1981.Google Scholar
  24. 24.
    Meiri, U.; Rahamimoff, R. Activation of transmitter release by strontium and calcium ions at the neuromuscular junctionJ. Physiol. (London) 215: 709–726, 1971.Google Scholar
  25. 25.
    Mellow, A. M.; Perry, B. D.; Silinsky, E. M. Effects of calcium and strontium in the process of acetylcholine release from motor nerve endingsJ. Physiol. (London) 328: 547–562, 1982.Google Scholar
  26. 26.
    Miyamoto, M. D.; Breckenridge, B. M. A cyclic adenosine monophosphate link in the catecholamine enhancement of transmitter release at the neuromuscular junctionJ. Gen. Physiol. 63: 609–624, 1974.CrossRefGoogle Scholar
  27. 27.
    Pagano, R. E.; Weinstein, J. N. Interactions of liposomes with mammalian cellsAnnu. Rev. Biophys. Bioeng. 7: 435–468, 1978.PubMedCrossRefGoogle Scholar
  28. 28.
    Phillis, J. W.; Wu, P. H. Adenosine and adenosine triphosphate as neurotransmitter/neuromodulator in the brain: The evidence is mounting. In: Trends in Autonomic Pharmacology, Volume 2, S. Kalsner, ed., Baltimore, Urban Schwarzenberg, 1982, pp. 237–261.Google Scholar
  29. 29.
    Rahamimoff, R.; Meiri, H.; Erulkar, S. D.; Barenholz, Y. Changes in transmitter release induced by ion- containing liposomesProc. Natl. Acad. Sci. USA 75: 5214–5216, 1978.PubMedCrossRefGoogle Scholar
  30. 30.
    Rail, T. W. Central nervous system stimulants: The xanthines. In: The Pharmacological Basis of Therapeutics, A. G. Gilman, L. S. Goodman, and A. Gilman, eds., New York, Macmillan Co., 1980, pp. 592–607.Google Scholar
  31. 31.
    Rasenick, M. M.; Stein, P. J.; Bitensky, M. W. The regulatory subunit of adenylate cyclase interacts with cytoskeletal componentsNature (London) 294: 560–562, 1981.CrossRefGoogle Scholar
  32. 32.
    Ribeiro, J. A. Purinergic modulation of transmitter releaseJ. Theor. Biol. 80: 259–270, 1979.PubMedCrossRefGoogle Scholar
  33. 33.
    Ribeiro, J. A.; Dominguez, M. L. Mechanisms of depression of neuromuscular transmission by ATP and adenosineJ. Physiol. (Paris) 74: 491–496, 1978.Google Scholar
  34. 34.
    Ribeiro, J. A.; Dominguez, M. J.; Goncalves, M. L. Purine effects at the neuromuscular junction and their modification by theophylline, imidazole and verapamilArch. Int. Pharmacodyn. Ther. 238: 206–219, 1979.PubMedGoogle Scholar
  35. 35.
    Ribeiro, J. A.; Sa-Almeida, A. M.; Namorado, J. M. Adenosine and adenosine triphosphate decrease 45Ca uptake by synaptosomes stimulated by potassiumBiochem. Pharmacol. 28: 1297–1300, 1979.PubMedCrossRefGoogle Scholar
  36. 36.
    Ribeiro, J. A.; Walker, J. The effects of adenosine triphosphate and adenosine diphosphate on transmission at the rat and frog neuromuscular junctionsBr. J. Pharmacol. 54: 213–218, 1975.PubMedGoogle Scholar
  37. 37.
    Roch, P.; Salamin, A. Adenosine-promoted accumulation of cyclic AMP in rabbit vagus nerve. Experientia 32: 1419–1421, 1976.PubMedCrossRefGoogle Scholar
  38. 38.
    Schulman, H. Calcium-dependent protein phosphorylation. In: Cyclic Nucleotides I: Handbook of Experimental Pharmacology, J. A. Nathanson and J. W. Kebabian, eds., Berlin, Springer-Verlag, 1982, pp. 425–478.Google Scholar
  39. 39.
    Silinsky, E. M. On the association between transmitter secretion and the release of adenine nucleotides from mammalian motor nerve terminalsJ. Physiol. (London) 247: 145–162, 1975.Google Scholar
  40. 40.
    Silinsky, E. M. Can barium support the release of acetylcholine by nerve impulses? Br. J. Pharmacol 59:215– 217, 1977.Google Scholar
  41. 41.
    Silinsky, E. M. On the role of barium in supporting the asynchronous release of acetylcholine quanta by motor nerve impulsesJ. Physiol. (London) 274: 157–171, 1978.Google Scholar
  42. 42.
    Silinsky, E. M. Evidence for specific adenosine receptors at cholinergic nerve endingsBr. J. Pharmacol. 71: 191–194, 1980.PubMedGoogle Scholar
  43. 43.
    Silinsky, E. M. On the calcium receptor that mediates depolarization-secretion coupling at cholinergic motor nerve terminalsBr. J. Pharmacol. 73: 413–429, 1981.PubMedGoogle Scholar
  44. 44.
    Silinsky, E. M. Properties of calcium receptors that initiate depolarization-secretion couplingFed. Proc. 41: 2172–2180, 1982.PubMedGoogle Scholar
  45. 45.
    Silinsky, E. M. On the mechanism by which adenosine receptor activation inhibits the release of acetylcholine from motor nerve endingsJ. Physiol. (London) 346: 243–256, 1984.Google Scholar
  46. 45.
    Silinsky, E. M. On the mechanism by which adenosine receptor activation inhibits the release of acetylcholine from motor nerve endingsJ. Physiol. (London) 346: 243–256, 1984.Google Scholar
  47. 47.
    Silinsky, E. M.; Hubbard, J. I. Release of ATP from rat motor nerve terminalsNature (London) 243: 404–405, 1973.CrossRefGoogle Scholar
  48. 48.
    Silinsky, E. M.; Mellow, A. M. The relationship between strontium and other divalent cations in the process of transmitter release from cholinergic nerve endings. In: Handbook of Stable Strontium, S. Skoryna, ed., New York, Plenum Press, 1981, pp. 263–285.Google Scholar
  49. 49.
    Standaert, F. G.; Dretchen, K. L. Cyclic nucleotides and neuromuscular transmissionFed. Proc. 38: 2182–2192, 1979.Google Scholar
  50. 50.
    Stephenson, R. P. A modification of receptor theoryBr. J. Pharmacol. 11: 379–393, 1956.Google Scholar
  51. 51.
    Stephenson, R. P.; Barlow, R. B. Concepts of drug action, quantitative pharmacology and biological assay. In: A Companion to Medical Studies, R. Passmore and J. S. Robson, eds., Oxford, Blackwell, 1970, pp. 1–19.Google Scholar
  52. 52.
    Stone, T. W. Physiological roles for adenosine and adenosine 5’-triphosphate in the nervous systemNeuroscience 6: 523–555, 1981.PubMedCrossRefGoogle Scholar
  53. 53.
    Zengel, J. E.; Magleby, K. L. Changes in miniature end-plate potential frequency during repetitive nerve stimulation in the presence of Ca2+, Ba2+ and Sr2+ at the frog neuromuscular junctionJ. Gen. Physiol. 77: 503–529, 1981.PubMedCrossRefGoogle Scholar
  54. 54.
    Zimmermann, H. Vesicle recycling and transmitter releaseNeuroscience 4: 1773–1804, 1979.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • E. M. Silinsky
    • 1
  1. 1.Department of PharmacologyNorthwestern University Medical SchoolChicagoUSA

Personalised recommendations