Biopolymer Electronic Phenomena

  • J. Ladik
  • S. Suhai
  • M. Seel
Part of the Physics of Solids and Liquids book series (PSLI)

Abstract

The quantum-mechanical study of the electronic structure of biopolymers (such as nucleic acids and proteins) is a challenging physical problem due to the complexity of these systems (many orbitals in the unit cell, aperiodicity, environmental effects, etc.) and requires the combination of different techniques with rather large-scale computations. One can expect, however, that the results of these calculations will enable one to compute their different physical and chemical properties (charge distribution and reactivity indices of the constituent molecules, density of states, spectra, different transport properties, etc.). The final aim of these investigations is to understand on the basis of these properties the different biological functions (e.g., the roles of point mutations in DNA, the mechanism of duplication of DNA, cell differentiation regulated by DNA-protein interactions, and the mechanism of carcinogenesis caused by chemical carcinogens).

Keywords

Glycine Soliton Adduct Polypeptide Alanine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 17

  1. 1.
    G. Del Re, J. Ladik, and C. Biczo,Phys. Rev. 155, 967 (1967); J.-M. Andre, L. Gouverneur, and G. Leroy,Int. J. Quantum Chem. 1, 427,451 (1967); R. N. Euwema, D. L. Wilhite, and G. T. Surrat,Phys. Rev. B7, 818 (1973).Google Scholar
  2. 2.
    J. Ladik, in:Electronic Structure of Polymers and Molecular Crystals(J.-M. Andre and J. Ladik, eds.), p. 23, Plenum Press, New York-London (1975).Google Scholar
  3. G. Biczo, unpublished result.Google Scholar
  4. J. Ladik and J. Cizek,Int. J. Quantum Chem. (submitted).Google Scholar
  5. I.I. Ukrainski,Theor. Chim. Acta30, 139 (1975); C. Merkel, in:Electronic Properties of Molecular Crystals(in German), Thesis, Technical University of Munich (1977).Google Scholar
  6. 6.
    See, for instance: M. Hamermesh,Group Theory and its Application to Physical Problemsp. 80, Addison-Wesley Publ., Reading, Mass. (1964).Google Scholar
  7. 7.
    R. Pariser and R. G. Parr,J. Chem. Phys. 21,466, 707 (1953); J. A. Pople,Trans. Faraday Soc.49, 1375 (1953).Google Scholar
  8. J. Ladik,Acta Phys. Acad. Sci. Hung. 18,185 (1965); J. Ladik, in:Electronic Structure of Polymers and Molecular Crystals(J.-M. Andre and J. Ladik, eds.), p. 663, Plenum Press, New York-London (1975).Google Scholar
  9. 9.
    N. Mataga and K. Nishimoto,Z. Phys. Chem.13, 140 (1957).CrossRefGoogle Scholar
  10. J. A. Pople, D. P. Santry, and G. A. Segal,J. Chem. Phys. 43,129 (1963); J. A. Pople and G. A. Segal,J. Chem. Phys.45, 136 (1965).Google Scholar
  11. H. Fujita and A. Imamura,J. Chem. Phys. 53, 4555 (1970); J. Ladik and G. Biczo,Acta Chim. Acad. Sci. Hung. 67,297 (1971); K. Morokuma,J. Chem. Phys.54, 1962 (1971).Google Scholar
  12. 12.
    J. A. Pople and D. C. Beveridge,Approximate Molecular Orbital Theory, McGraw-Hill, New York (1970).Google Scholar
  13. 13.
    For further details see J. Ladik, in:Electronic Structure of Polymers and Molecular Crystals(J.-M. Andre and J. Ladik, eds.), p. 663, Plenum Press, New York-London (1975).Google Scholar
  14. 14.
    T. C. Collins, A. B. Kunz, and P. W. Deutsch,Phys. Rev. A10, 1034 (1974).ADSCrossRefGoogle Scholar
  15. 15.
    J. Avery, J. Packer, J. Ladik, and G. Biczo,J. Mol. Spectrosc.29, 194 (1969).ADSCrossRefGoogle Scholar
  16. 16.
    Y. Toyozawa,Prog. Theor. Phys. Kyoto12, 421 (1954).ADSMATHCrossRefGoogle Scholar
  17. 17.
    A. B. Kunz,Phys. Rev. B6, 606 (1972).ADSCrossRefGoogle Scholar
  18. 18.
    J. T. Devreese, A. B. Kunz, and T. C. Collins,Solid State Commun. 11, 673 (1972).ADSCrossRefGoogle Scholar
  19. J. Ladik and S. Suhai,Int. J. Quantum Chem. QBS7, 181 (1980).Google Scholar
  20. 20.
    W. Hehre, R. F. Stewart, and J. A. Pople,J. Chem. Phys.51, 2657 (1969).ADSCrossRefGoogle Scholar
  21. 21.
    S. Arnott, S. D. Dover, and A. J. Wonacott,Acta Crystallogr., Sect. B25, 2192 (1969).CrossRefGoogle Scholar
  22. 22.
    J. Ladik and S. Suhai, in:Theoretical Chemistry(C. Thompson, ed.), p. 49, The Royal Society of Chemistry, London (1981).CrossRefGoogle Scholar
  23. 23.
    Y. Takeuti,Prog. Theor. Phys. Kyoto18, 421 (1957).ADSCrossRefGoogle Scholar
  24. 24.
    B. F. Rozsnyai and J. Ladik, J. Chem. Phys. 52, 5711 (1970); 53, 4325 (1970).ADSCrossRefGoogle Scholar
  25. 25.
    J. Ladik, in:Advances in Quantum Chemistry(P. O. Lowdin, ed.), Vol. 7, p. 397, Academic Press, New York-London (1970).Google Scholar
  26. 26.
    . B. Mely and A. Pullman,Theor. Chim. Acta13, 278 (1969); S. Huzinaqa,J. Chem. Phys.42, 1293 (1965).Google Scholar
  27. 27.
    L. B. Clark, G. G. Peschel, and I. Tinoco, Jr.,J. Chem. Phys.69, 3615 (1965).CrossRefGoogle Scholar
  28. 28.
    J. Ladik, S. Suhai, P. Otto, and T. C. Collins,Int. J. Quantum Chem. QBS4, 55 (1977).Google Scholar
  29. 29.
    L. Seprodi, G. Biczo, and J. Ladik,Int. J. Quantum Chem.3, 62 (1969).CrossRefGoogle Scholar
  30. 30.
    See, for instance: T. C. Collins, in:Electronic Structure of Polymers and Molecular Crystals(J.-M. Andre and J. Ladik, eds.), p. 405, Plenum Press, New York-London (1975).Google Scholar
  31. 31.
    S. Suhai,Phys. Rev. B27, 3506 (1983).ADSCrossRefGoogle Scholar
  32. 32.
    S. Suhai, T. C. Collins, and J. Ladik,Biopolymers18, 899 (1978).CrossRefGoogle Scholar
  33. 33.
    D. A. Breen and P. J. Flory,J. Am. Chem. Soc.87, 279 (1965).Google Scholar
  34. 34.
    S. Suhai,Theor. Chim. Acta34, 157 (1974).CrossRefGoogle Scholar
  35. 35.
    S. Suhai and J. Ladik,Theor. Chim. Acta28, 27 (1972).CrossRefGoogle Scholar
  36. 36.
    S. Suhai, J. Kaspar, and J. Ladik,Int. J. Quantum Chem.17, 995 (1980).CrossRefGoogle Scholar
  37. 37.
    See, for instance: H. Ehrenreich and R. S. Knox, in:The Theory of Excitons, Solid State Physics(F. Seitz and D. Turnbull, eds.), Suppl. 5, p. 1, Academic Press, New York-London (1963).Google Scholar
  38. J. C. Slater, MIT Technical Report, No. 5 (1953); G. F. Koster and J. C. Slater,Phys. Rev. 95, 1167 (1954); G. F. Koster,Phys. Rev.95, 1436 (1954).Google Scholar
  39. 39.
    G. H. Wannier,Phys. Rev.52, 191 (1937).ADSMATHCrossRefGoogle Scholar
  40. 40.
    For a review see: E. I. Blount,Solid State Phys. 13, 305 (1963).CrossRefGoogle Scholar
  41. S. Suhai,Phys. Rev. B (in print).Google Scholar
  42. 42.
    B. Hudson and B. Kohler, Am. Rev. Phys. Chem.25, 437 (1974).ADSCrossRefGoogle Scholar
  43. 43.
    S. Suhai, J. Chem. Phys.73, 3843 (1980).ADSCrossRefGoogle Scholar
  44. R. Ahlrichs and W. Kutzelnigg,J. Chem. Phys. 48,1819 (1968); W. Meyer,J. Chem. Phys58, 1017 (1973).Google Scholar
  45. 45.
    J. Cizek,J. Chem. Phys. 45, 4256 (1966); J. Cizek and J. Paldus,Int. J. Quantum Chem. 5, 359 (1975); J. Paldus and J. Cizek,Adv. Quantum Chem.9, 105 (1975).Google Scholar
  46. 46.
    For a review see: N. H. March, in:Quantum Theory of Polymers(J.-M. Andre, J. Delhalle, and J. Ladik, eds.), p. 48, D. Reidel Publ. Co., Dordrecht (1978).Google Scholar
  47. 47.
    P. Hohenberg and W. Kohn,Phys. Rev.136, 3864 (1964).MathSciNetCrossRefGoogle Scholar
  48. 48.
    J. Ladik, in:Recent Advances in the Quantum Theory of Polymers(J.-M. Andre, J.-L. Bredas, J. Delhalle, J. Ladik, G. Leroy, and C. Moser, eds.), p. 155, Springer-Verlag, Berlin-Heidelberg-New York (1979).Google Scholar
  49. 49.
    J. Ladik and M. Seel,Phys. Rev. B13, 5338 (1976).ADSCrossRefGoogle Scholar
  50. 50.
    M. Seel and J. Ladik,Chem. Phys.45, 349 (1980).ADSCrossRefGoogle Scholar
  51. 51.
    S. Kirkpatrick, B. Velicky, and H. Ehrenreich,Phys. Rev. B1, 3250 (1977).ADSCrossRefGoogle Scholar
  52. B. Gydrffy and S. Faulkner, personal communication (1976).Google Scholar
  53. 53.
    M. Seel, T. C. Collins, F. Martino, D. K. Rai, and J. Ladik,Phys. Rev. B18, 6460 (1978).ADSCrossRefGoogle Scholar
  54. R. J. Elliott, J. A. Krumhansl, and P. L. Leath,Rev. Mod. Phys. 46,465 (1974); F. Martino in:Quantum Theory of Polymers(J.-M. Andre, J. Delhalle, and J. Ladik, eds.), p. 169, D. Reidel Publ. Co., Dordrecht (1978).Google Scholar
  55. 55.
    F. Martino and J. Ladik,Phys. Rev. B22, 1092 (1980).ADSCrossRefGoogle Scholar
  56. 56.
    G. Del Re and J. Ladik,Chem. Phys.49, 321 (1980).ADSCrossRefGoogle Scholar
  57. 57.
    J. Ladik,Phys. Rev. B17, 1663 (1978).ADSCrossRefGoogle Scholar
  58. 58.
    J. Callaway,J. Math. Phys.5, 783 (1964).MathSciNetADSCrossRefGoogle Scholar
  59. G. A. Baraff and M. Schluter,Phys. Rev. Lett. 41, 892 (1978);Phys. Rev. B 19, 4969 (1979)Google Scholar
  60. 60.
    J. Berholc, N. D. Lipari, and S. T. Pantelides,Phys. Rev. Lett.41, 895 (1978).ADSCrossRefGoogle Scholar
  61. J. Kaspar (unpublished results).Google Scholar
  62. P. Dean, Proc. R. Soc. London, Ser. A254, 507 (1960); Proc. R. Soc. London, Ser. A260, 263 (1961); Rev. Mod. Phys.44, 127 (1972).Google Scholar
  63. M. Seel,Chem. Phys. 43, 103 (1979); see also M. Seel, in:Recent Advances in the Quantum Theory of Polymers(J.-M. Andre, J.-L. Bredas, J. Delhalle, J. Ladik, G. Leroy, and C. Moser, eds.), p. 271, Springer-Verlag, Berlin-Heidelberg-New York (1979).Google Scholar
  64. 64.
    R. Day and F. Martino,Chem. Phys. Lett.84, 86 (1981).ADSCrossRefGoogle Scholar
  65. 65.
    J. H. Wilkinson,The Algebraic Eigenvalue Problem, Clarendon Press, Oxford (1965).MATHGoogle Scholar
  66. 66.
    E. W. Prohofsky and L. L. van Zandt, personal communication (1980).Google Scholar
  67. S. Suhai,J. Chem. Phys. 57, 5599 (1972); S. Suhai, in:Quantum Theory of Polymers(J.-M. Andre, J. Delhalle, and J. Ladik, eds.), p. 335, D. Reidel Publ. Co., Dordrecht (1978).Google Scholar
  68. 68.
    See, for instance: F. J. Blatt,Physics of Electronic Conduction in Solids, p. 121, McGraw-Hill, New York (1978).Google Scholar
  69. 69.
    F. J. Blatt.Physics of Electronic Conduction in Solids, pp. 135, 186, McGraw-Hill, New York (1978).Google Scholar
  70. 70.
    C. T. O’Konski, P. Moser, and M. Shirai,Biopolymers Symp. 1, 479 (1964).Google Scholar
  71. C. Y. Liang and E. G. Scalco,Nature198, 86 (1963); R. S. Snart,Trans. Faraday Soc.59, 854 (1963).Google Scholar
  72. 72.
    S. H. Glarum,J. Phys. Chem. Solids24, 1577 (1963).ADSCrossRefGoogle Scholar
  73. P. Otto and J. Ladik, Chem. Phys. 8, 192 (1975); Chem. Phys. 19, 205 (1977); P. Otto, Chem. Phys. 33, 407 (1978); J. Ladik, Int. J. Quantum Chem. QBS3, 51 (1976).Google Scholar
  74. 74.
    I. Berenblum,Carcinogenesis as a Biological Problem, p. 211, North-Holland Publ. Co., Amsterdam-Oxford (1973).Google Scholar
  75. 74.
    P. O. Lowdin,Int. J Quantum Chem. QBS4, 185 (1977).Google Scholar
  76. 76.
    H. Bush,Biochemistry of the Cancer Cell, p. 282, Academic Press, New York-London (1962).Google Scholar
  77. 77.
    R. Daudel, in:Mutagenesis and Carcinogenesis( P. Daudel, R. Daudel, Y. Moule, and F. Zajadela, eds.), C.N.R.S., Paris (1977).Google Scholar
  78. A. Szent-Gyorgyi,Int. J. Quantum Chem. QBS3, 45 (1976); A. Szent-Gyorgyi,Bioenergetics4, 535 (1973); A. Szent-Gyorgyi,Electronic Bioology and Cancer, Marcel Dekker Inc., New York-Basel (1976).Google Scholar
  79. A. Karpfen and J. Ladik (unpublished results).Google Scholar
  80. T. C. Collins, private communication.Google Scholar
  81. 81.
    A. S. Davydov,Studia Biophys. (Berlin) 62 (1977).Google Scholar
  82. 82.
    K. Laki and J. Ladik,Int. J. Quantum Chem. QBS3, 51 (1976).Google Scholar
  83. 83.
    J. N. Murrel, M. Randic, and D. R. Williams,Proc. R. Soc. London, Ser. A284, 566 (1965).ADSCrossRefGoogle Scholar
  84. P. Otto and J. Ladik (unpublished results).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. Ladik
    • 1
  • S. Suhai
    • 1
  • M. Seel
    • 1
  1. 1.Theoretical Chemistry Department and Laboratory of the National Foundation for Cancer ResearchUniversity of Erlangen-NürnbergErlangenGermany

Personalised recommendations