Positive and Negative Chemical Ionization Mass Spectrometry

  • Ralph C. Dougherty


Chemical ionization (CI) mass spectrometry developed from studies of ion-molecule reactions in simple hydrocarbon gases.(1) CI mass spectra depend upon the fact that the cross sections for ion-molecule reactions involving electron or ion transfer are considerably larger than the corresponding cross sections for interaction of molecules with free electrons.(2) If a substrate is present in an ion source at concentrations ranging from 10-3 to 10-5 torr, and the same source contains a reagent gas at a pressure of approximately 1 torr, the initial ionization caused by interaction of high-energy electrons with the gases in the source will occur primarily in the reagent gas. Because the gas pressure in the ion source is maintained at approximately 1 torr, ions formed by interaction with the primary electron beam will experience up to thousands of collisions with neutral molecules prior to exiting the source. Since the cross sections for ion-molecule reactions are considerably larger than the cross sections for interactions of electrons and molecules, many of these collisions will be reactive, with the result that the spectrum of ions emerging from the source will be substantially altered from that obtained at low source pressures. The ionization process in CI mass spectrometry is best reviewed by examining the reactions that occur in the high-pressure mass spectrum of methane, one of the most common CI reagent gases.


Chemical Ionization Proton Affinity Electron Impact Mass Spectrum Chemical Ionization Mass Spectrometry Chemical Ionization Mass Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. S. B. Munson and F. H. Field, J. Am. Chem. Soc. 88, 1621 (1966).CrossRefGoogle Scholar
  2. 2.
    F. H. Field and M. S. B. Munson, J. Am. Chem. Soc. 87, 3289 (1965).CrossRefGoogle Scholar
  3. 3.
    M. A. Haney and J. L. Franklin, J. Chem. Phys. 73, 4328 (1969).CrossRefGoogle Scholar
  4. 4.
    J. L. Franklin, J. G. Dillard, H. M. Rosenstock, J. T. Herron, K. Draxl, and F. H. Field, “Ionization Potentials, Appearance Potentials and Heats of Formation of Gas Phase Positive Ions,” NSRDS-NBS 26, U.S. Dept. of Commerce, Washington, D.C., 1969.Google Scholar
  5. 5.
    G. W. A. Milne and M. J. Lacey, in CRC Critical Reviews in Analytical Chemistry, Vol. 4, Chemical Rubber Company, Cleveland, 1974, p. 45.Google Scholar
  6. 6.
    P. Kebarle, Ann. Rev. Phys. Chem. 28, 445–476 (1977).CrossRefGoogle Scholar
  7. 7.
    J. I. Brauman and L. K. Blair, J. Am. Chem. Soc. 91, 2126–2127 (1969).CrossRefGoogle Scholar
  8. 8.
    M. J. S. Dewar and R. C. Dougherty, The PMO Theory of Organic Chemistry, Plenum, New York, 1975, pp. 512–514.Google Scholar
  9. 9.
    S. J. Gaskell and C. J. W. Brooks, Org. Mass Spectrom. 12, 651 (1977).CrossRefGoogle Scholar
  10. 10.
    S.J. Gaskell, C. G. Edmonds, and C.J. W. Brooks, J. Chromatogr. 126, 591 (1976).CrossRefGoogle Scholar
  11. 11.
    W. H. Elliott, Biochemical Applications of Mass Spectrometry, (G. R. Waller, ed.), Wiley- Interscience, New York, 1972, p. 291.Google Scholar
  12. 12.
    P. A. Szczepanik, D. L. Hochey, and P. D. Klein, J. Lipid Res. 17, 314 (1976).Google Scholar
  13. 13.
    A. M. Hogg and T. L. Nagabhushan, Tetrahedron Lett. 4827–4831 (1972).Google Scholar
  14. 14.
    R. C. Dougherty, J. D. Roberts, W. W. Binkley, O. S. Chizhow, V. I. Kadentsev, and A. A. Solovyov, J. Org. Chem. 39, 451–455 (1974).CrossRefGoogle Scholar
  15. 15.
    W. Vetter, Biochemical Applications of Mass Spectrometry (G. R. Waller, ed.), Wiley-In- terscience, New York, 1972, pp. 387–404.Google Scholar
  16. 16.
    W. Vetter, Biochemical Applications of Mass Spectrometry (G. R. Waller and O. C. Dermer, eds.), Wiley-Interscience, New York, 1980, pp. 439–467.Google Scholar
  17. 17.
    D. F. Hunt, G. C. Stafford, Jr., F. W. Crow, and J. W. Russell, Anal. Chem. 48, 2098 (1976).CrossRefGoogle Scholar
  18. 18.
    G. W. A. Milne, H. M. Fales, and T. Axenrod, Anal Chem. 43, 1815–1820 (1971).CrossRefGoogle Scholar
  19. 19.
    T. Murata, T. Ariga, M. Oshima, and T. MiyatakeJ. Lipid Res. 19, 370–375 (1978).Google Scholar
  20. 20.
    R. C. Dougherty, S. Howard, and J. D. Wander, in Polynuclear Aromatic Hydrocarbons in the Environment (N. L. Richards, ed.), Dekker, New York, 1982.Google Scholar
  21. 21.
    T. H. Risby, Envir. Health Pers. 36, 39–46 (1980).CrossRefGoogle Scholar
  22. 22.
    R. C. Dougherty and J. D. Wander, Biomed. Mass Spectrom. 17 401 – 404 (1980).CrossRefGoogle Scholar
  23. 23.
    R. C. Dougherty and A. Mitch, unpublished.Google Scholar
  24. 24.
    R. C. Dougherty and K. Piotrowska, Proc. Natl. Acad. Sci., 73, 1777–1781 (1976).CrossRefGoogle Scholar
  25. 25.
    R. C. Dougherty, M. J. Whitaker, L. Smith, D. L. Stalling, and D. W. Kuehl, Enriron. Health Persp. 36, 103–117 (1980).Google Scholar
  26. 26.
    R. C. Dougherty, M.J. Whitaker, S.-Y. Tang, R. Bottcher, M. Keller, and D. W. Kuehl, in Environmental Health Chemistry ( J. D. McKinney, ed.), Ann Arbor Science, Ann Arbor, 1980, pp. 263–277.Google Scholar
  27. 27.
    D. W. Kuehl, M. J. Whitaker, and R. C. Dougherty, Anal. Chem. 52, 935–940 (1980).CrossRefGoogle Scholar
  28. 28.
    D. L. Stalling, L. M. Smith, and C. Rappe, in Environmental Health Chemistry ( J. D. McKinney, ed.), Ann Arbor Science, Ann Arbor, 1980, pp. 245–261.Google Scholar
  29. 29.
    H. R. Buser, personal communication.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Ralph C. Dougherty
    • 1
  1. 1.Department of ChemistryFlorida State UniversityTallahasseeUSA

Personalised recommendations