Skip to main content

Computational Methods for Low-Energy Electron-Molecule Collisions

  • Chapter
Electron-Molecule Collisions

Abstract

In the last few years considerable progress has been made in ab initio calculations of low-energy electron-molecule collision cross sections. This is partly due to the increasing need for these cross sections in many applications, partly due to the development of new methods and associated computer codes, and finally but not least due to the increasing availability of powerful computer facilities which have enabled the relevant equations to be solved accurately. Thus, in the last few years, accurate static exchange calculations have been carried out for a variety of diatomic molecules, and the first results for electronic excitation based on the close-coupling expansion have been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.F. Lane, The theory of electron-molecule collisions, Rev. Mod. Phys. 52, 29–120 (1980); P.G. Burke, Theory of electron-molecule collisions, in Quantum Dynamics of Molecules (R.G. Wolley, ed.), pp. 483-547, Plenum Press, New York (1980).

    Google Scholar 

  2. D.W. Norcross and L.A. Collins, Recent developments in the theory of electron scattering by highly polar molecules. Adv. At. Mol. Phys. 18, 341–397 (1982).

    CAS  Google Scholar 

  3. E.S. Chang and U. Fano, Theory of electron—molecule collisions by frame transformations, Phys. Rev. A 6, 173–185 (1972).

    Google Scholar 

  4. A.M. Arthurs and A. Dalgarno, The theory of scattering by a rigid rotator, Proc. R. Soc. London A 256, 540–551 (1960).

    Google Scholar 

  5. N. Chandra and A. Temkin, Hybrid theory and calculation of e-N2 scattering, Phys. Rev. A 13, 188–203 (1976); N. Chandra and A. Temkin, Hybrid theory calculation of simultaneous vibration—rotation excitation in e—N2 scattering, Phys. Rev. A 14, 507-511 (1976).

    CAS  Google Scholar 

  6. P.G. Burke and M.J. Seaton, Numerical solutions of the integro-differential equations of electron-atom collision theory, Methods Comput. Phys. 10, 1–80 (1971).

    CAS  Google Scholar 

  7. M. Gailitis, New forms of asymptotic expansions for wave functions of chargedparticle scattering, J. Phys. B 9, 843–854 (1976).

    CAS  Google Scholar 

  8. M. Le Dourneuf and Vo Ky Lan. The variable-phase method in multichannel electronatom or electron-ion scattering, J. Phys. B 10, L35–L42 (1977).

    Google Scholar 

  9. M.A. Crees, ASYPCK, a program for calculating asymptotic solutions of the coupled equations of electron collision theory, Comput. Phys. Commun. 19, 103–137 (1980); M.A. prees, ASYPCK2, an extended version of ASYPCK, ibid. 23, 181-198 (1981).

    Google Scholar 

  10. R. Marriott, Calculation of the Is–2s electron excitation cross section of hydrogen, Proc. Phys. Soc. 72, 121–129 (1958).

    CAS  Google Scholar 

  11. P.G. Burke and A.L. Sinfailam, Electron-molecule interactions. II. Scattering by closed-shell diatomic molecules, J.Phys. B 3, 641–659 (1970); A.L. Sinfailam, Electron scattering by closed-shell diatomic molecules, Comput. Phys. Commun. 1, 445-452 (1970).

    Google Scholar 

  12. K. Smith, R.J.W. Henry, and P.G. Burke, Scattering of electrons by atomic systems with configurations 2p q and 3p q, Phys. Rev. 147, 21–28 (1966).

    CAS  Google Scholar 

  13. B.D. Buckley and P.G. Burke, The scattering of low-energy electrons by diatomic molecules, J. Phys. B 10, 725–739 (1977).

    CAS  Google Scholar 

  14. G. Raseev, A. Giusti-Suzor, and H. Lefebvre-Brion, Continuum electronic wave functions in the static-exchange approximation for resonant processes in diatomic molecules. I. Widths for electron capture in the CH+ closed-shell molecular ion, J. Phys. B 11, 2735–2747 (1978); G. Raseev, Third version of a program for calculating the static interaction potential between an electron and a diatomic molecule, Comput. Phys. Commun. 20, 267-274 (1980); G. Raseev, Electron scattering by closed or open shell diatomic molecules, Comput. Phys. Commun. 20, 275-289 (1980).

    Google Scholar 

  15. W.N. Sams and DJ. Kouri, Noniterative solutions of integral equations for scattering. I. Single channels, J. Chem. Phys. 51, 4809–4814 (1969); W.N. Sams and D.J. Kouri, Noniterative solutions of integral equations for scattering. II. Coupled channels, ibid. 51, 4815-4819 (1969); W.N. Sams and D.J. Kouri, Noniterative solutions of integral equations for scattering. III. Coupled open and closed channels and eigenvalue problems, ibid. 52, 4144-4150 (1970); W.N. Sams and D.J. Kouri, Noniterative solutions of integral equations for scattering. IV. Preliminary calculations for coupled open channels and coupled eigenvalue problems, ibid. 53, 496-501 (1970).

    Google Scholar 

  16. E.R. Smith and R.J.W. Henry, Noniterative integral-equation approach to scattering problems, Phys. Rev. A 7, 1585–1590 (1973); E.R. Smith and R.J.W. Henry, Application of the noniterative integral-equation method to electron-hydrogen scattering, ibid. 8, 572-575 (1973); R.J.W. Henry, S.P. Rountree, and E.R. Smith, A general program to calculate atomic continuum processes using the NIEM method, Comput. Phys. Commun. 23, 233-273 (1981).

    Google Scholar 

  17. M.A. Morrison, The coupled-channels integral-equations method in the theory of lowenergy electron-molecule scattering, in Electron-Molecule and Photon-Molecule Collisions (T.N. Rescigno, V. McKoy, and B.I. Schneider, eds.), pp. 15–51, Plenum Press, New York (1979).

    Google Scholar 

  18. S. Hara, The scattering of slow electrons by hydrogen molecules, J. Phys. Soc. Jpn. 22, 710–718 (1967); S. Hara, A two-center approach in low-energy electron-H2 scattering, J. Phys. Soc. Jpn. 27, 1009-1019 (1969).

    Google Scholar 

  19. L.A. Collins, W.D. Robb, and M.A. Morrison, Low-energy electron scattering by H2 and N2: An iterative static-exchange calculation, J. Phys. B 11, L777-L781 (1978); L.A. Collins, W.D. Robb, and M.A. Morrison, Electron scattering by diatomic molecules: Iterative static-exchange techniques, Phys. Rev. A 21, 488-495 (1980).

    Google Scholar 

  20. W.D. Robb and L.A. Collins, Iterative static-exchange techniques applied to lowenergy collisions of electrons with molecular ions: H2 +, CH+, and N2 +, Phys. Rev. A 22, 2474–2483 (1980).

    CAS  Google Scholar 

  21. S. Fraga and B. Ransil, Studies in molecular structure. VI. Potential curve for the interaction of two hydrogen atoms in the LCAO MO SCF approximation, J. Chem. Phys. 35, 1967–1977 (1961).

    CAS  Google Scholar 

  22. P.E. Cade, K.D. Sales, and A.C. Wahl, Electronic structure of diatomic molecules. III. A. Hartree-Fock wave functions and energy quantities for N2 (X 1g +) and N2 + (X 2g +, A 2Πu, B 2u +) molecular ions, J. Chem. Phys. 44, 1973–2003 (1966).

    CAS  Google Scholar 

  23. P.E. Cade and W.M. Huo, Electronic structure of diatomic molecules. VI. A. Hartree-Fock wave functions and energy quantities for the ground states of the first-row hydrides, AH, J. Chem. Phys. 47, 614–648 (1967).

    CAS  Google Scholar 

  24. M. Rhoades-Brown, M.H. Macfarlane, and S.C. Pieper, Techniques for heavy-ion coupled-channels calculations. I. Long-range Coulomb coupling, Phys. Rev. C 21, 2417–2426 (1980); M. Rhoades-Brown, M.H. Macfarlane, and S.C. Pieper, Techniques for heavy-ion coupled-channels calculations. II. Iterative solution of the coupled radial equations, ibid. 21, 2436-2446 (1980).

    CAS  Google Scholar 

  25. B.I. Schneider and L.A. Collins, A linear algebraic approach to electron-molecule collisions, J. Phys. B 14, L101–L106 (1981); B.I. Schneider and L.A. Collins, Linearalgebraic approach to electron—molecule collisions: Separable exchange approximations, Phys. Rev. A 24, 1264-1266 (1981); L.A. Collins and B.I. Schneider, Linearalgebraic approach to electron—molecule collisions: General formulation, ibid. 24, 2387-2401 (1981).

    CAS  Google Scholar 

  26. M.J. Seaton, Computer programs for the calculation of electron—atom collision cross sections. II. A numerical method for solving the coupled integro-differential equations, J. Phys. B 7, 1817–1840 (1974).

    CAS  Google Scholar 

  27. H. Feshbach, Unified theory of nuclear reactions, Ann. Phys. (N.Y.) 5, 357–390 (1958).

    CAS  Google Scholar 

  28. C. Bloch, Une formulation unifiée de la théorie des réactions nucléaires, Nucl. Phys. 4, 503–528 (1957).

    Google Scholar 

  29. R.K. Nesbet, Anomaly-free variational method for inelastic scattering, Phys. Rev. 179, 60–70 (1969); R.K. Nesbet, Variational Methods in Electron-Atom Scattering Theory, Plenum Press, New York (1980).

    Google Scholar 

  30. S.P. Rountree and G. Parnell, Modified variational method for scattering, Phys. Rev. Lett. 39, 853–856 (1977).

    CAS  Google Scholar 

  31. L.A. Collins and W.D. Robb, Multichannel variational calculations of low-energy electron-molecule collisions: Static exchange approximation, J. Phys. B 13, 1637–1649 (1980).

    CAS  Google Scholar 

  32. C. Flammer, Spheroidal Wave Functions, Stanford University Press, Stanford (1957).

    Google Scholar 

  33. S. Nagahara, The scattering of slow electrons by the diatomic molecules. I. General theory, J. Phys. Soc. Jpn. 8, 165–168 (1953); S. Nagahara, The scattering of slow electrons by the diatomic molecules. II. Elastic scattering by the hydrogen molecules, J. Phys. Soc. Jpn. 9, 52-55 (1954).

    Google Scholar 

  34. K.L. Bell, Scattering of electrons with energies below 60 eV by hydrogen molecules, J. Phys. B 14, 2895–2900 (1981).

    CAS  Google Scholar 

  35. M.A. Crees and D.L. Moores, The use of two-centre expansions in the scattering of electrons by N2 molecules, J. Phys. B 8, L195–L199 (1975); M.A. Crees and D.L. Moores, Eigenphase sums for the scattering of electrons by N2 molecules, J. Phys. B 10, L225-L227(1977).

    Google Scholar 

  36. H. Takagi and H. Nakamura, Studies on continuum processes for the e-H2 system, in Symposium on Electron-Molecule Collisions — Invited Papers (I. Shimamura and M. Matsuzawa, eds.), pp. 61–65, University of Tokyo (1979); H. Takagi and H. Nakamura, Elastic scattering of electrons from H2: Phaseshifts, quantum defects and two-electron excited states, J. Phys. B 13, 2619-2632 (1980); H. Takagi and H. Nakamura, Two-electron excited states and adiabatic quantum defects of H2: Analysis of elastic scattering of electrons from H2, Phys. Rev. A 27, 691-708 (1983).

    Google Scholar 

  37. M.J. Seaton and P.M.H. Wilson, A frozen cores approximation for atomic structure calculations, J. Phys. B 5, L1–L3 (1972).

    CAS  Google Scholar 

  38. M.A. Crees, M.J. Seaton, and P.M.H. Wilson, IMPACT, a program for the solution of the coupled integro-differential equations of electron—atom collision theory, Comput. Phys. Commun. 15, 23–83 (1978).

    CAS  Google Scholar 

  39. T.N. Rescigno and A.E. Orel, Generalization of the separable approximation to scattering in the presence of long-range forces, Phys. Rev. A 23, 1134–1137 (1981); T.N. Rescigno and A.E. Orel, Separable approximation for exchange interactions in electron-molecule scattering, Phys. Rev. A 24, 1267-1271 (1981).

    CAS  Google Scholar 

  40. J.R. Taylor, Scattering Theory, John Wiley & Sons, New York (1972).

    Google Scholar 

  41. P.G. Burke and N. Chandra, Electron-molecule interactions. III. A pseudo-potential method for e —N2 scattering, J. Phys.B 5, 1696–1711 (1972).

    CAS  Google Scholar 

  42. P.G. Burke, N. Chandra, and F.A. Gianturco, Electron-molecule interactions. IV. Scattering by polyatomic molecules, J. Phys. B 5, 2212–2224 (1972).

    CAS  Google Scholar 

  43. F.A. Gianturco and D.G. Thompson, The Ramsauer-Townsend effect in methane, J. Phys. B 9, L383–L385 (1976).

    CAS  Google Scholar 

  44. N.F. Lane and S. Geltman, Rotational excitation of diatomic molecules by slow electrons: Application to H2, Phys. Rev. 160, 53–67 (1967).

    CAS  Google Scholar 

  45. J.B. Furness and I.E. McCarthy, Semiphenomenological optical model for electron scattering on atoms, J. Phys. B 6, 2280–2291 (1973); R. Vanderpoorten, A local optical potential study of elastic electron-atom scattering, ibid. 8, 926-939 (1975); R. Vanderpoorten, A local optical potential study of elastic e —Li scattering, ibid. 9, L535-L538(1976).

    Google Scholar 

  46. D.G. Truhlar and M.A. Brandt, Close-coupling calculations of differential cross sections for elastic scattering and rotational excitation of hydrogen molecules by electrons at 10 and 40 eV, J. Chem. Phys. 65, 3092–3101 (1976); D.G. Truhlar, R.E. Poling, and M.A. Brandt, Infinite-order sudden approximation for rotational excitation of hydrogen molecules by electrons in the energy range 10–40eV, ibid. 64, 826-829 (1976).

    CAS  Google Scholar 

  47. J.C. Slater, Quantum Theory of Atomic Structure, Vols. I and II, McGraw-Hill, New York (1960).

    Google Scholar 

  48. M.A. Morrison and L.A. Collins, Exchange in low-energy electron-molecule scattering: Free-electron-gas model exchange potentials and applications to e-H2 and e-N2 collisions, Phys. Rev. A 17, 918–938 (1978).

    CAS  Google Scholar 

  49. M.A. Morrison, N.F. Lane, and L.A. Collins, Low-energy electron—molecule scattering: Application of coupled-channel theory to e-CO2 collisions, Phys. Rev. A 15, 2186–2201 (1977).

    CAS  Google Scholar 

  50. L.A. Collins and D.W. Norcross, Electron collisions with highly polar molecules: Comparison of model, static, and static-exchange calculations for alkali-metal halides, Phys. Rev. A 18, 467–498 (1978).

    CAS  Google Scholar 

  51. L.A. Collins, W.D. Robb, and D.W. Norcross, Low-energy collisions of electrons with highly polar molecules: Orthogonalization and model exchange potentials, Phys. Rev. A 20, 1838–1840 (1979).

    CAS  Google Scholar 

  52. M.A. Morrison and L.A. Collins, Exchange in low-energy electron-molecule scattering: Orthogonalization and free-electron-gas approximations for collisions with polar and nonpolar molecules, Phys. Rev. A 23, 127–138 (1981).

    CAS  Google Scholar 

  53. L.A. Collins and M.A. Morrison, Exchange in low-energy e-CO2 collisions, Phys. Rev. A 25, 1764–1767 (1982).

    CAS  Google Scholar 

  54. T.L. Gibson and M.A. Morrison, Comparison of model exchange potentials for lowenergy e-H2 collisions with and without polarisation effects, J. Phys. B 14, 727–739 (1981).

    CAS  Google Scholar 

  55. J.R. Rumble, Jr. and D.G. Truhlar, Comparison of local exchange potentials for electron-N2 scattering, J. Chem. Phys. 72, 5223–5227 (1980); A. Jain and D.G. Thompson, Rotational excitation of CH4 and H2O by slow electron impact, J. Phys. B. 16, 3077-3098 (1983).

    CAS  Google Scholar 

  56. F.A. Gianturco and D.G. Thompson, The scattering of slow electrons by polyatomic molecules. A model study for CH4, H2O and H2S, J. Phys. B 13, 613–625 (1980).

    CAS  Google Scholar 

  57. S. Salvini and D.G. Thompson, Exchange approximations in the scattering of slow electrons by polyatomic molecules, J. Phys. B 14, 3797–3803 (1981).

    CAS  Google Scholar 

  58. M.E. Stewart and D.H. Madison, Use of local exchange potentials in inelastic scattering, Phys. Lett. 87A, 165–168 (1982).

    Google Scholar 

  59. L.A. Collins, R.J.W. Henry, and D.W. Norcross, Electron collisions with polar molecules: Exchange and polarisation in elastic scattering by HC1, J. Phys. B 13, 2299–2307 (1980).

    CAS  Google Scholar 

  60. M.A. Morrison and P.J. Hay, Ab initio adiabatic polarization potentials for low-energy electron-molecule and positron-molecule collisions: The e-N2 and e-CO2 systems, Phys. Rev. A 20, 740–748 (1979).

    CAS  Google Scholar 

  61. R.A. Eades, D.G. Truhlar, and D.A. Dixon, Ab initio self-consistent-field polarizabilities and electron-molecule polarization potentials. III. N2, Phys. Rev. A 20, 867–878 (1979).

    CAS  Google Scholar 

  62. A. Temkin, Polarization and exchange effects in the scattering of electrons from atoms with application to oxygen, Phys. Rev. 107, 1004–1012 (1957); A. Temkin, A note on the scattering of electrons from atomic hydrogen, ibid. 116, 358-363 (1959).

    Google Scholar 

  63. A. Temkin and K.V. Vasavada, Scattering of electrons from H2 +: The method of polarized single-center orbitals, Phys. Rev. 160, 109–117 (1967); A. Temkin, K.V. Vasavada, E.S. Chang, and A. Silver, Scattering of electrons from H2 +. II. Phys. Rev. 186, 57-66 (1969).

    CAS  Google Scholar 

  64. N.F. Lane and R.J.W. Henry, Polarization potential in low-energy electron-H2 scattering, Phys. Rev. 173, 183–190 (1968).

    CAS  Google Scholar 

  65. R.J.W. Henry and N.F. Lane, Polarization and exchange effects in low-energy electron-H2 scattering, Phys. Rev. 183, 221–231 (1969).

    CAS  Google Scholar 

  66. T.L. Gibson and M.A. Morrison, A parameter-free nonadiabatic polarization potential for low-energy e-H2 collisions, J. Phys. B 15, L221–L228 (1982).

    CAS  Google Scholar 

  67. J.S. Bell and E.J. Squires, A formal optical model, Phys. Rev. Lett. 3, 96–97 (1959).

    Google Scholar 

  68. D. Dill and J.L. Dehmer, Electron-molecule scattering and molecular photoionization using the multiple-scattering method, J. Chem. Phys. 61, 692–699 (1974).

    CAS  Google Scholar 

  69. J.L. Dehmer and D. Dill, The continuum multiple-scattering approach to electronmolecule scattering and molecular photoionization, in: Electron—Molecule and Photon—Molecule Collisions (T.N. Rescigno, V. McKoy, and B.I. Schneider, eds.), pp. 225–265, Plenum Press, New York (1979).

    Google Scholar 

  70. P. Ziesche and W. John, Multiple scattering on stressed clusters of muffin-tin poten tials. Application to elastic electron scattering by molecules, J. Phys. B 9, 333–344 (1976).

    CAS  Google Scholar 

  71. K.H. Johnson, Scattered-waves theory of the chemical bond, Advances in Quantum Chemistry (P.O. Löwdin, ed.), pp. 143–185, Academic Press, New York (1973).

    Google Scholar 

  72. J. Siegel, D. Dill, and J.L. Dehmer, Continuum and bound molecular electronic wave functions for generalized multiple-scattering potentials, J. Chem. Phys. 64, 3204–3206 (1976).

    CAS  Google Scholar 

  73. J.R. Rumble, Jr., and D.G. Truhlar, Investigation of the assumptions of the multiplescattering method for electron-molecule scattering cross sections, J. Chem. Phys. 72, 3206–3210 (1980).

    CAS  Google Scholar 

  74. Z. Pavlovic, M.J.W. Boness, A. Herzenberg, and G.J. Schulz, Vibrational excitation in N2 by electron impact in the 15–35 eV region, Phys. Rev. A 6, 676–685 (1972).

    CAS  Google Scholar 

  75. D. Dill, J. Welch, J.L. Dehmer, and J. Siegel, Shape-resonance-enhanced vibrational excitation at intermediate energies (10–40 eV) in electron-molecule scattering, Phys. Rev. Lett. 43, 1236–1239 (1979).

    Google Scholar 

  76. A. Temkin, The art and science of calculating autoionization, in Autoionization (A. Temkin, ed.), pp. 55–76, Mono Book Corp., Baltimore (1966).

    Google Scholar 

  77. A.U. Hazi and H.S. Taylor, Stabilization method of calculating resonance energies: Model problem, Phys. Rev. A 1, 1109–1120 (1970).

    Google Scholar 

  78. M. Krauss and F.H. Mies, Molecular-orbital calculation of the shape resonance in N2, Phys. Rev. A 1, 1592–1598 (1970).

    Google Scholar 

  79. C.W. McCurdy, Jr., T.N. Rescigno, and V. McKoy, A simple method for evaluating lowenergy electron-molecule scattering cross sections using discrete basis functions, J. Phys. B 9, 691–698 (1976).

    CAS  Google Scholar 

  80. W.P. Reinhardt, L 2 discretization of atomic and molecular electronic continua: Moment, quadrature and J-matrix techniques, Comput. Phys. Commun. 17, 1–21 (1979).

    CAS  Google Scholar 

  81. C.W. McCurdy, Jr., and T.N. Rescigno, Complex-basis-function calculations of resolvent matrix elements: Molecular photoionization, Phys. Rev. A 21, 1499–1505 (1980).

    CAS  Google Scholar 

  82. N. Padial, G. Csanak, B.V. McKoy, and P.W. Langhoff, Photoexcitation and ionization in carbon dioxide: Theoretical studies in the separated-channel static-exchange approximation, Phys. Rev. A 23, 218–235 (1981).

    CAS  Google Scholar 

  83. A.U. Hazi, Stieltjes-moment-theory technique for calculating resonance widths, in Electron-Molecule and Photon-Molecule Collisions (T.N. Rescigno, V. McKoy, and B.I. Schneider, eds.), pp. 281–298, Plenum Press, New York (1979).

    Google Scholar 

  84. C.W. McCurdy and T.N. Rescigno, Basis-set calculation of Siegert eigenvalues: Partial resonance widths, Phys. Rev. A 20, 2346–2351 (1979).

    CAS  Google Scholar 

  85. E.P. Wigner, Resonance reactions and anomalous scattering, Phys. Rev. 70, 15–33 (1946).

    CAS  Google Scholar 

  86. E.P. Wigner, Resonance reactions, Phys. Rev. 70, 606–618 (1946).

    CAS  Google Scholar 

  87. E.P. Wigner and L. Eisenbud, Higher angular momenta and long-range interaction in resonance reactions, Phys. Rev. 72, 29–41 (1947).

    CAS  Google Scholar 

  88. P.G. Burke and A. Hibbert, R-matrix theory of electron-atom collisions, in Proceedings of the VIth International Conference on the Physics of Electronic and Atomic Collisions, Massachusetts Institute of Technology, pp. 367–369 (1969).

    Google Scholar 

  89. P.G. Burke, A. Hibbert, and W.D. Robb, Electron scattering by complex atoms, J. Phys. B 4, 153–161 (1971); P.G. Burke and W.D. Robb, The R-matrix theory of atomic processes, Adv. At. Mol. Phys. 11, 143-214 (1975).

    Google Scholar 

  90. B. Schneider, R-matrix theory for electron-atom and electron-molecule collisions using analytic basis set expansions, Chem. Phys. Lett. 31, 237–241 (1975).

    CAS  Google Scholar 

  91. B.I. Schneider, R-matrix theory for electron-molecule collisions using analytic basis set expansions. II. Electron-H2 scattering in the static-exchange model, Phys. Rev. A 11, 1957–1962 (1975).

    CAS  Google Scholar 

  92. B.I. Schneider and P.J. Hay, Elastic scattering of electrons from F2, J. Phys. B 9, L165–L167 (1976).

    CAS  Google Scholar 

  93. B.I. Schneider and P.J. Hay, Elastic scattering from F2: An R-matrix calculation, Phys. Rev. A 13, 2049–2056 (1976).

    CAS  Google Scholar 

  94. M.A. Morrison and B.I. Schneider, Electron-molecule scattering theory: An R-matrix study of low-energy elastic e-N2 collisions in the static-exchange approximation, Phys. Rev. A 16, 1003–1012 (1977).

    CAS  Google Scholar 

  95. B.I. Schneider, The R-matrix method: Applications to electron-molecule collisions, in Electronic and Atomic Collisions (G. Watel, ed.), pp. 257–269, North-Holland, Amsterdam (1978).

    Google Scholar 

  96. P.G. Burke, I. Mackey, and I. Shimamura, R-matrix theory of electron—molecule scattering, J. Phys. B 10, 2497–2512 (1977).

    CAS  Google Scholar 

  97. B.D. Buckley, P.G. Burke, and Vo Ky Lan, R-matrix calculations for electronmolecule scattering, Comput. Phys. Commun. 17, 175–179 (1979).

    CAS  Google Scholar 

  98. C.J. Noble, P.G. Burke, and S. Salvini, Low-energy scattering of electrons by diatomic molecules, in Proceedings of the XIIth International Conference on the Physics of Electronic and Atomic Collisions, Gatlinburg, Tennessee, pp. 322–323 (1981) J. Phys. B 15, 3779-3786 (1982).

    Google Scholar 

  99. J. Kendrick and B.D. Buckley, An adaption of the ALCHEMY atomic and molecular integrals packages for R-matrix electron-molecular collisions, Daresbury Laboratory Internal Report, DL/SCI/TM 22T (1980).

    Google Scholar 

  100. CJ. Noble, The ALCHEMY linear molecule integral generator, Daresbury Laboratory Technical Memorandom DL/SCI/TM 33T (1982).

    Google Scholar 

  101. R.K. Nesbet, Electronic structure of N2, CO, and BF, J. Chem. Phys. 40, 3619–3633 (1964).

    CAS  Google Scholar 

  102. B.J. Ransil, Studies in molecular structure. II. LCAO-MO-SCF wave functions for selected first-row diatomic molecules, Rev. Mod. Phys. 32, 245–254 (1960).

    Google Scholar 

  103. B.I. Schneider, Direct calculation of resonance energies and widths using an R-matrix approach, Phys. Rev. A 24, 1–3 (1981).

    CAS  Google Scholar 

  104. P.G. Burke, C.J. Noble, and S. Salvini, Electron scattering by nitrogen molecules at intermediate energies, J. Phys. B, L113–L120 (1983).

    Google Scholar 

  105. R.K. Nesbet, private communication.

    Google Scholar 

  106. R. Damburg and E. Karule, A modification of the close-coupling approximation for e-H2 scattering allowing for the long-range interactions, Proc. Phys. Soc. 90, 637–640 (1967).

    Google Scholar 

  107. P.G. Burke and J.F.B. Mitchell, Polarized pseudo-states for low-energy electron-atom scattering, J. Phys. B 7, 665–673 (1974).

    CAS  Google Scholar 

  108. P.W. Coulter, Formalism for determining pseudostates in modified close-coupling calculations, Phys. Rev. A 22, 372–378 (1980).

    CAS  Google Scholar 

  109. J. Kendrick, Calculation of pseudo-molecular orbitals for electron-molecule collisions, Daresbury Laboratory Internal Report, DL/SCI/TM 18T (1979).

    Google Scholar 

  110. B.I. Schneider, M. Le Dourneuf, and P.G. Burke, Theory of vibrational excitation and dissociative attachment: An R-matrix approach, J. Phys B 12, L365–L369 (1979); B.I. Schneider, M. Le Dourneuf, and Vo Ky Lan, Resonant vibrational excitation of N2 by low-energy electrons: An ab initia R-matrix calculation, Phys. Rev. Lett. 43, 1926-1929 (1979).

    Google Scholar 

  111. T.N. Rescigno, C.W. McCurdy, and V. McKoy, Discrete basis set approach to nonspherical scattering, Chem. Phys. Lett. 27, 401–404 (1974).

    CAS  Google Scholar 

  112. T.N. Rescigno, C.W. McCurdy, Jr., and V. McKoy, Discrete-basis-set approach to nonspherical scattering. II. Phys. Rev. A 10, 2240–2245 (1974).

    Google Scholar 

  113. T.N. Rescigno, C.W. McCurdy, Jr., and V. McKoy, Low-energy e —H2 elastic cross sections using discrete basis functions, Phys. Rev. A 11, 825–829 (1975).

    CAS  Google Scholar 

  114. N.S. Ostlund, Polyatomic scattering integrals with Gaussian orbitals, Chem. Phys. Lett. 34, 419–422 (1975).

    CAS  Google Scholar 

  115. A.W. Fliflet, D.A. Levin, M. Ma, and V. McKoy, Discrete-basis-set calculation for e-N2 scattering cross sections in the static-exchange approximation, Phys. Rev. A 17, 160–169 (1978).

    CAS  Google Scholar 

  116. T.N. Rescigno, private communication (1979).

    Google Scholar 

  117. A. Klonover and U. Kaldor, Ab initia calculations of electron-molecule-scattering cross sections including polarization, Chem. Phys. Lett. 51, 321–324 (1977).

    CAS  Google Scholar 

  118. A. Klonover and U. Kaldor, Ab initia electron—molecule scattering theory including polarisation: Elastic scattering and rotational excitation of H2, J. Phys. B 11, 1623–1632 (1978).

    CAS  Google Scholar 

  119. A. Klonover and U. Kaldor, Ab initio electron-molecule scattering theory including polarisation: Vibrational and vibrational-rotational excitation of H2, J. Phys. B 12, 323–330 (1979).

    CAS  Google Scholar 

  120. A. Klonover and U. Kaldor, Zero-point vibration in low-energy electron-molecule scattering theory, J. Phys. B 12, L61–L65 (1979).

    CAS  Google Scholar 

  121. A.W. Fliflet and V. McKoy, Variationally corrected discrete-basis-set calculation for electron-molecule scattering in the static-exchange approximation, Phys. Rev. A 18, 1048–1054 (1978).

    CAS  Google Scholar 

  122. A.W. Fliflet and V. McKoy, Discrete-basis-set method for electron-molecule continuum wave functions, Phys. Rev. A 18, 2107–2114 (1978).

    CAS  Google Scholar 

  123. D.A. Levin, A.W. Fliflet, and V. McKoy, Low-energy e —CO scattering in the staticexchange approximation, Phys. Rev. A 21, 1202–1209 (1980).

    CAS  Google Scholar 

  124. C. Lovelace, Practical theory of three-particle states. I. Nonrelativistic, Phys. Rev. 135, B1225–B1249 (1964).

    Google Scholar 

  125. S.K. Adhikari and I.H. Sloan, Separable expansion of the t matrix with analytic form factors, Phys. Rev. C 11, 1133–1140 (1975).

    Google Scholar 

  126. D.K. Watson, R.R. Lucchese, V. McKoy, and T.N. Rescigno, Schwinger variational principle for electron-molecule scattering: Application to electron-hydrogen scattering, Phys. Rev. A 21, 738–744 (1980).

    CAS  Google Scholar 

  127. F. Linder and H. Schmidt, Rotational and vibrational excitation of H2 by slow electron impact, Z. Naturforsch. A 26a, 1603–1617 (1971).

    CAS  Google Scholar 

  128. M. Berman and U. Kaldor, The Schwinger variational method in electron-atom and electron-molecule scattering theory with polarisation, J. Phys. B 14, 3993–4005 (1981); M. Berman, O. Walter, and L.S. Cederbaum, Electron-molecule scattering in the optical potential approach: surpassing second order, Phys. Rev. Lett. 50, 1979-1982 (1983).

    Google Scholar 

  129. R.R. Lucchese, D.K. Watson, and V. McKoy, Iterative approach to the Schwinger variational principle for electron-molecule collisions, Phys. Rev. A 22, 421–426 (1980).

    CAS  Google Scholar 

  130. R.R. Lucchese and V. McKoy, Iterative approach to the Schwinger variational principle applied to electron-molecular-ion collisions, Phys. Rev. A 24, 770–776 (1981).

    CAS  Google Scholar 

  131. D.K. Watson, T.N. Rescigno, and B.V. McKoy, Schwinger variational calculations for electron scattering by polar molecules, J. Phys. B 14, 1875–1882 (1981).

    CAS  Google Scholar 

  132. K. Takatsuka and V. McKoy, Variational scattering theory using a functional of fractional form. I. General theory, Phys. Rev. A 23, 2352–2358 (1981); K. Taka tsuka and V. McKoy, Variational scattering theory using a functional of fractional form. II. An L 2 approach, ibid. 23, 2359-2364 (1981); K. Takatsuka and V. McKoy, Schwinger variational principle for multichannel scattering, Phys. Rev. Lett. 45, 1396-1399 (1980).

    Google Scholar 

  133. K. Takatsuka, R.R. Lucchese, and V. McKoy, Relationship between the Schwinger and Kohn-type variational principles in scattering theory, Phys. Rev. A 24, 1812–1816 (1981).

    CAS  Google Scholar 

  134. M.-T. Lee, K. Takatsuka, and V. McKoy, Application of a new variational functional for electron-molecule collisions: An extension of the Schwinger variational principle, J. Phys. B 14, 4115–4123 (1981); K. Takatsuka, M.-T. Lee, and V. McKoy, The application of a fractional C-functional for electron-molecule scattering, in Proceedings of the XIIth International Conference on the Physics of Electronic and Atomic Collisions, pp. 303-304, Gatlinburg, Tennessee (1981).

    Google Scholar 

  135. K. Takatsuka and V. McKoy, Extension of the Schwinger variational principle beyond the static-exchange approximation, Phys. Rev. A 24, 2473–2480 (1981).

    CAS  Google Scholar 

  136. D.A. Levin, A.W. Fliflet, and V. McKoy, Low-energy rotational and vibrationalrotational excitation cross sections for H2 by electron impact, Phys. Rev. A 20, 491–498 (1979).

    CAS  Google Scholar 

  137. J.R. Rumble, D.G. Truhlar, and M.A. Morrison, Calculation of vibrational excitation of N2 by electron impact at 5–50 eV using extended-basis-set Hartree-Fock wave functions, J. Phys. B 14, L301–L305 (1981).

    CAS  Google Scholar 

  138. K. Onda and D.G. Truhlar, State-to-state cross sections for elastic and inelastic electron scattering by N, at 20–35 eV, including resonant enhancement of vibrational excitation, J. Chem. Phys. 72, 5249–5262 (1980).

    CAS  Google Scholar 

  139. R.K. Nesbet, Energy-modified adiabatic approximation for scattering theory, Phys. Rev. A 19, 551–556 (1979).

    CAS  Google Scholar 

  140. A.N. Feldt and M.A. Morrison, Breakdown of the adiabatic-nuclear-rotation approximation for near-threshold e-H2 collisions, J. Phys. B 15, 301–308 (1982).

    CAS  Google Scholar 

  141. A.N. Feldt, T.L. Gibson, and M.A. Morrison, Theoretical investigations of low-energy e-H2 scattering, in Proceedings of the XIIth International Conference on the Physics of Electronic and Atomic Collisions, pp. 324–325, Gatlinburg, Tennessee (1981).

    Google Scholar 

  142. A. Temkin, Theory and calculation of electron-molecule scattering, in Electron and Atomic Collisions (N. Oda and K. Takayanagi, eds.), pp. 95–107, North-Holland, Amsterdam (1980).

    Google Scholar 

  143. B.H. Choi and R.T. Poe, Vibrational and rotational transitions in low-energy electrondiatomic-molecule collisions. I. Close-coupling theory in the moving body-fixed frame, Phys. Rev. A 16, 1821–1830 (1977); B.H. Choi and R.T. Poe, Vibrational and rotational transitions in low-energy electron-diatomic-molecule collisions. II. Hybrid theory and close-coupling theory: An l z-conserving close-coupling approximation, ibid. 16, 1831-1840 (1977).

    CAS  Google Scholar 

  144. A. Temkin, Internuclear dependence of the polarizability of N2, Phys. Rev. A 17, 1232–1235 (1978).

    CAS  Google Scholar 

  145. J. Kendrick, Ab initio calculations of the derivative of the static polarisability of N2 and CO, J. Phys. B 11, L601–L603 (1978).

    CAS  Google Scholar 

  146. E.C. Sullivan and A. Temkin, A non-iterative method for solving PDEs arising in electron scattering, Comput. Phys. Commun. 25, 97–110 (1982).

    CAS  Google Scholar 

  147. K. Onda and A. Temkin,P.D.E. approach to electron-molecule scattering, in Proceedings of the XIIth International Conference on the Physics of Electronic and Atomic Collisions, pp. 293–294, Gatlinburg, Tennessee (1981).

    Google Scholar 

  148. G.J. Schulz, Vibrational excitation of nitrogen by electron impact, Phys. Rev. 125, 229–232 (1962); G.J. Schulz, Vibrational excitation of N2, CO, and H2 by electron impact, Phys. Rev. 135, A988-A994 (1964).

    Google Scholar 

  149. G.J. Schulz, Resonances in electron impact on diatomic molecules, Rev. Mod. Phys. 45, 423–486 (1973).

    CAS  Google Scholar 

  150. A. Herzenberg and F. Mandl, Vibrational excitation of molecules by resonance scattering of electrons, Proc. R. Soc. London A 270, 48–71 (1962).

    CAS  Google Scholar 

  151. J.N. Bardsley and F. Mandl, Resonant scattering of electrons by molecules, Rep. Prog. Phys. 31, 471–531 (1968).

    CAS  Google Scholar 

  152. A. Herzenberg, Strong excitation of nuclear motions in electron-molecule collisions, in Electronic and Atomic Collisions (G. Watel, ed.), pp. 1–22, North-Holland, Amsterdam (1978).

    Google Scholar 

  153. A. Herzenberg, Oscillatory energy dependence of resonant electron-molecule scattering, J. Phys. B 1, 548–558 (1968).

    Google Scholar 

  154. D.T. Birtwistle and A. Herzenberg, Vibrational excitation of N2 by resonance scattering of electrons, J. Phys. B 4, 53–70 (1971).

    CAS  Google Scholar 

  155. J.N. Bardsley, A. Herzenberg, and F. Mandl, Vibrational excitation and dissociative attachment in the scattering of electrons by hydrogen molecules, Proc. Phys. Soc. 89, 321–340 (1966).

    CAS  Google Scholar 

  156. A.J.F. Siegert, On the derivation of the dispersion formula for nuclear reactions, Phys. Rev. 56, 750–752 (1939).

    CAS  Google Scholar 

  157. L. Dubé and A. Herzenberg, Absolute cross sections from the “boomerang model” for resonant electron-molecule scattering, Phys. Rev. A 20, 194–213 (1979).

    Google Scholar 

  158. S.F. Wong, unpublished results reproduced by A. Herzenberg in Electronic and Atomic Collisions (G. Watel, ed.), pp. 1–22, North-Holland, Amsterdam (1978).

    Google Scholar 

  159. A.U. Hazi, T.N. Rescigno, and M. Kurilla, Cross sections for resonant vibrational excitation of N2 by electron impact, Phys. Rev. A 23, 1089–1099 (1981).

    CAS  Google Scholar 

  160. J.M. Wadehra and J.N. Bardsley, Vibrational-and rotational-state dependence of dissociative attachment in e-H2 collisions, Phys. Rev. Lett. 41, 1795–1798 (1978).

    CAS  Google Scholar 

  161. M. Allan and S.F. Wong, Effect of vibrational and rotational excitation on dissociative attachment in hydrogen, Phys. Rev. Lett. 41, 1791–1794 (1978).

    CAS  Google Scholar 

  162. J.N. Bardsley and J.M. Wadehra, Dissociative attachment and vibrational excitation in low-energy collisions of electrons with H2 and D2, Phys. Rev. A 20, 1398–1405 (1979).

    CAS  Google Scholar 

  163. A.W. Fliflet, V. McKoy, and T.N. Rescigno, Dissociation of F2 by electron impact excitation of the lowest 3Πu electronic state, Phys. Rev. A 21, 788–792 (1980).

    CAS  Google Scholar 

  164. A.U. Hazi, A.E. Orel, and T.N. Rescigno, Ab initio study of dissociative attachment of low-energy electrons to F2, Phys. Rev. Lett. 46, 918–922 (1981).

    CAS  Google Scholar 

  165. R.J. Hall, Dissociative attachment and vibrational excitation of F2 by slow electrons, J. Ohem. Phys. 68, 1803–1807 (1978).

    CAS  Google Scholar 

  166. P.L. Kapur and R.E. Peierls, The dispersion formulae for nuclear reactions, Proc. R. Soc. London A 166, 277–295 (1938).

    CAS  Google Scholar 

  167. H. Ehrhardt and K. Willmann, Angular dependence of resonance scattering of lowenergy electrons by N2, Z. Phys. 204, 462–473 (1967).

    CAS  Google Scholar 

  168. L.A. Collins and B.I. Schneider, Linear algebraic approach to electronic excitation of atoms and molecules by electron impact, Phys. Rev. A 27, 101–111 (1983); B.I. Schneider and L.A. Collins, lg resonances in low-energy e-H2 + collisions, Phys. Rev. A 28, 166-168 (1983).

    CAS  Google Scholar 

  169. J. Tennyson, C.J. Noble, and S. Salvini, Low-energy e-H2 + collisions using the R-matrix method, J. Phys. B 17, 905–912 (1984).

    CAS  Google Scholar 

  170. S. Chung and C.C. Lin, Application of the close-coupling method to excitation of electronic states and dissociation of H2 by electron impact, Phys. Rev. A 17, 1874–1891 (1978).

    CAS  Google Scholar 

  171. T.N. Rescigno, C.W. McCurdy, Jr., and V. McKoy, A relationship between-the many-body theory of inelastic scattering and the distorted wave approximation, J. Phys. B 7, 2396–2402 (1974).

    CAS  Google Scholar 

  172. T.N. Rescigno, C.W. McCurdy, Jr., and V. McKoy, Low-energy electron-impact excitation of the hydrogen molecule, Phys. Rev. A 13, 216–223 (1976).

    CAS  Google Scholar 

  173. C.W. McCurdy, Jr., T.N. Rescigno, D.L. Yeager, and V. McKoy, The equations of motion method: An approach to the dynamical properties of atoms and molecules, in Methods of Electronic Structure Theory 3 (H.F. Schaefer III, ed.), pp. 339–386, Plenum Press, New York (197

    Google Scholar 

  174. A.W. Fliflet and V. McKoy, Distorted-wave-approximation cross sections for excitation of the b 3u + and B 1u + states of H2 by low-energy-electron impact, Phys. Rev. A 21, 1863–1875 (1980).

    CAS  Google Scholar 

  175. U. Fano and D. Dill, Angular momentum transfer in the theory of angular distributions, Phys. Rev. A 6, 185–192 (1972).

    Google Scholar 

  176. S.K. Srivastava and S. Jensen, Experimental differential and integral electron impact cross sections for the B 1u + state of H2 in the intermediate-energy region, J. Phys. B 10, 3341–3346 (1977).

    CAS  Google Scholar 

  177. S.J.B. Corrigan, Dissociation of molecular hydrogen by electron impact, J. Chem. Phys. 43, 4381–4386 (1965).

    CAS  Google Scholar 

  178. T.K. Holley, S. Chung, C.C. Lin, and E.T.P. Lee, Electron-impact excitation cross section of the a 1Πg state of the N2 molecule by the close-coupling method, Phys. Rev. A 24, 2946–2952 (1981).

    CAS  Google Scholar 

  179. D.C. Cartwright, A. Chutjian, S. Trajmar, and W. Williams, Electron impact excitation of the electronic states of N2. I. Differential cross sections at incident energies from 10 to 50 eV, Phys. Rev. A 16, 1013–1040 (1977); D.C. Cartwright, S. Trajmar, A. Chutjian, and W. Williams, Electron impact excitation of the electronic states of N2. II. Integral cross sections at incident energies from 10 to 50 eV, Phys. Rev. A 16, 1041-1051 (1977).

    Google Scholar 

  180. A.W. Fliflet, V. McKoy, and T.N. Rescigno, Cross sections for excitation of the B 2Πg, C 3Πu and E 3g + states of N2 by low-energy electron impact in the distorted-wave approximation, J. Phys. B 12, 3281–3293 (1979).

    CAS  Google Scholar 

  181. M.-T Lee and V. McKoy, Cross sections for electron-impact excitation of the electronic states of N2, Phys. Rev. A 28, 697–705 (1983).

    CAS  Google Scholar 

  182. M.-T. Lee and V. McKoy, Distorted-wave-approximation cross sections for excitation of several electronic states of H2 and N2 by low energy-electron impact, in Proceedings of the XIIth International Conference on the Physics of Electronic and Atomic Collisions, pp. 330–331, Gatlinburg, Tennessee (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Buckley, B.D., Burke, P.G., Noble, C.J. (1984). Computational Methods for Low-Energy Electron-Molecule Collisions. In: Shimamura, I., Takayanagi, K. (eds) Electron-Molecule Collisions. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2357-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2357-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9443-6

  • Online ISBN: 978-1-4613-2357-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics