Skip to main content

Molecular Spectroscopy by Electron Scattering

  • Chapter
Electron-Molecule Collisions

Part of the book series: Physics of Atoms and Molecules ((PAMO))

Abstract

The previous chapters have been primarily concerned with the theoretical description of electron—molecule scattering processes and with the appropriate comparisons between theory and experiment. The emphasis has tended to be on reaction mechanisms, rather than on the spectroscopy of the molecular states involved in the reactions. In the present chapter we take a different and complementary approach, and deal mainly with the use of electron—molecule collisions as a spectroscopic tool for investigating the electronic structure of simple molecules. We shall see that there is considerable information to be gained from electron scattering spectroscopy which is not available from optical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. Sanche and G.J. Schulz, Electron transmission spectroscopy: Core excited resonances in diatomic molecules, Phys. Rev. A 6, 69–86 (1972).

    Google Scholar 

  2. E.N. Lassettre, A. Skerbele, M.A. Dillon, and K.J. Ross, High-resolution study of electron-impact spectra at kinetic energies between 33 and 100 eV and scattering angles to 16°, J. Chem. Phys. 48, 5066–5069 (1968).

    CAS  Google Scholar 

  3. J.B. Hasted, Physics of Atomic Collisions, Butterworths, London (1964).

    Google Scholar 

  4. E.W. McDaniel, Collision Phenomena in Ionized Gases, John Wiley and Sons, New York (1964).

    Google Scholar 

  5. H.S.W. Massey and E.H.S. Burhop, Electronic and Ionic Impact Phenomena II, Oxford University Press, London (1969).

    Google Scholar 

  6. L.G. Christophorou, Atomic and Molecular Radiation Physics, Wiley-Interscience, New York (1971).

    Google Scholar 

  7. K.D. Sevier, Low-Energy Electron Spectrometry, John Wiley and Sons, New York (1972).

    Google Scholar 

  8. H.S.W. Massey, Negative Ions, Cambridge University Press, London (1976).

    Google Scholar 

  9. E.N. Lassettre, Inelastic scattering of electrons by atmospheric gases, Can. J. Chem. 47, 1733–1774 (1969).

    CAS  Google Scholar 

  10. S. Trajmar, J.K. Rice, and A. Kupperman, Electron-impact spectroscopy, Adv. Chem. Phys. 18, 15–90 (1970).

    CAS  Google Scholar 

  11. U.M. Inokuti, Inelastic collisions of fast charged particles with atoms and molecules-The Bethe theory revisited, Rev. Mod. Phys. 43, 297–347 (1971).

    CAS  Google Scholar 

  12. M.A. Dillon, Electron impact, in Creation and Detection of the Excited State (A.A. Lamola, ed.), pp. 375–428, Marcel Dekker, New York (1971).

    Google Scholar 

  13. J.B. Hasted, Electron scattering spectroscopy, Contemp. Phys. 14, 357–387 (1973).

    CAS  Google Scholar 

  14. G.J. Schulz, Resonances in electron impact on diatomic molecules, Rev. Mod. Phys. 45, 423–486 (1973).

    CAS  Google Scholar 

  15. E.N. Lassettre and A. Skerbele. Inelastic electron scattering, in Methods of Experimental Physics, Vol. 3 (D. Williams, ed.) pp. 868–951, Academic Press, New York (1974).

    Google Scholar 

  16. F.H. Read, Collisions between electrons and molecules, in Atoms, Molecules and Lasers, pp. 567–618, International Atomic Energy Agency, Vienna (1974).

    Google Scholar 

  17. C.E. Brion, Photoelectron spectroscopy by electron impact, Rad. Res. 64, 37–52 (1975).

    CAS  Google Scholar 

  18. J.F. Williams, The spectroscopy of atomic compound states, in Progress in Atomic Spectroscopy, Part B (W. Hanle and H. Kleinpoppen, eds.), pp. 1031–1074, Plenum Press, New York (1978).

    Google Scholar 

  19. D.E. Golden, Resonances in electron and molecule scattering, Adv. At. Mol. Phys. 14, 1–87 (1978).

    CAS  Google Scholar 

  20. R.J. Celotta and R.H. Huebner, Electron impact spectroscopy: An overview of the lowenergy aspects, in Electron Spectroscopy: Theory, Techniques and Applications. Vol. 3 (C.R. Brundle and A.D. Baker, eds.), pp. 41–125, Academic Press, New York (1979).

    Google Scholar 

  21. I.E. McCarthy, Theory of (e, 2e experiments, in Coherence and Correlation in Atomic Collisions (H. Kleinpoppen and J.F. Williams, eds.), pp. 1–12, Plenum Press, New York (1980).

    Google Scholar 

  22. A. Giardini-Guidoni, R. Cannilloni, and G. Stefani, Impulsive (e, 2e) experiments; a tool to test different ionization theories and electronic structure of atoms and molecules, in Coherence and Correlation in Atomic Collisions (H. Kleinpoppen and J.F. Williams, eds.), pp. 13–40, Plenum Press, New York (1980).

    Google Scholar 

  23. J.A. Simpson and U. Fano, Classification of resonances in the electron scattering cross-section of Ne and He, Phys. Rev. Lett. 11, 158–159 (1963).

    CAS  Google Scholar 

  24. A.W. Weiss and M. Krauss, Bound-state calculation of scattering resonance energies, J. Chem. Phys. 52, 4363–4368 (1970).

    CAS  Google Scholar 

  25. D. Spence, Classification of Feshbach resonances in electron—molecule scattering, in The Physics of Electronic and Atomic Collisions (J.S. Risley and R. Geballe, eds.), pp. 241–255, University of Washington Press, Seattle (1976).

    Google Scholar 

  26. F.H. Read, A modified Rydberg formula, J. Phys. B 10, 449–458 (1977).

    CAS  Google Scholar 

  27. F.H. Read, J.N.H. Brunt, and G.C. King, The classification of resonances in electron impact on neon, argon, and krypton, J. Phys. B 9, 2209–2219 (1976).

    CAS  Google Scholar 

  28. J.N.H. Brunt, G.C. King, and F.H. Read, Excitation of carbon monoxide and nitrogen molecules by electron impact below 16 eV: Studies of resonances in the excitation functions of metastable and ultra-violet emitting levels, J. Phys. B 11, 173–192 (1978).

    CAS  Google Scholar 

  29. F. Gresteau, R.I. Hall, A. Huetz, D. Vichon, and J. Mazeau, Decay of Feshbach resonances in NO: I. Energy dependence of the electronic coupling to the ground state, J. Phys. B 12, 2925–2935 (1979).

    CAS  Google Scholar 

  30. H. Lefebvre-Brion, Nature of the resonant states of NO, Chem. Phys. Lett. 19, 456–458 (1973).

    CAS  Google Scholar 

  31. F. Gresteau, R.I. Hall, A. Huetz, D. Vichon, and J. Mazeau, Decay of Feshbach resonances in NO: II. Dynamic coupling to Rydberg states, J. Phys. B 12, 2937–2945 (1979).

    CAS  Google Scholar 

  32. D. Spence, Systematics of Feshbach resonances in the molecular halogens, Phys. Rev. A 10, 1045–1052 (1974).

    CAS  Google Scholar 

  33. D. Spence and T. Noguchi, Feshbach resonances associated with Rydberg states of the hydrogen halides, J. Chem. Phys. 63, 505–513 (1975).

    CAS  Google Scholar 

  34. F. Fiquet-Fayard, Theoretical problems in the interpretation of dissociative attachment experiments, Vacuum 24, 533–547 (1974).

    CAS  Google Scholar 

  35. G. Parlant and F. Fiquet-Fayard, The O2 −2Πg resonance: Theoretical analysis of electron scattering data, J. Phys. B 9, 1617–1628 (1976).

    CAS  Google Scholar 

  36. G. Joyez, J. Comer, and F.H. Read, Resonance rotational excitation of H2 by electron impact, J. Phys. B 6, 2427–2440 (1973).

    CAS  Google Scholar 

  37. J. Comer and F.H. Read, Potential curves and symmetries of some resonant states of H2 , J. Phys. B 4, 368–388 (1971).

    CAS  Google Scholar 

  38. F.H. Read, Angular distribution for resonant scattering of electrons by molecules, J. Phys. B 1, 893–908 (1968).

    Google Scholar 

  39. D. Andrick and F.H. Read, Angular distributions for the excitation of vibronic states by resonant electron molecule reactions, J. Phys. B 4, 389–396 (1971).

    CAS  Google Scholar 

  40. E.S. Chang, Theory of angular distributions of electrons resonantly scattered by molecules. I. Vibrational and rotational excitation of diatomic molecules, Phys. Rev. A 16, 1841–1849 (1977).

    CAS  Google Scholar 

  41. E.S. Chang, New interpretation of resonances in H2 , Phys. Rev A 12, 2399–2401 (1975).

    CAS  Google Scholar 

  42. B.D. Buckley and C. Bottcher, Feshbach projection operator calculations of the resonant states of H2 , J. Phys. B 10, L635–L640 (1977).

    CAS  Google Scholar 

  43. J.N. Bardsley and J.S. Cohen, Variational calculations of resonant states of H2 , J. Phys. B 11, 3645–3654 (1978).

    CAS  Google Scholar 

  44. C. Bottcher and F.H. Read, Angular distributions in resonance scattering of electrons by molecules, Proc. VIIIth ICPEAC (Belgrade), pp. 447–488 (1973).

    Google Scholar 

  45. D.T. Birtwistle and A. Herzenberg, Vibrational excitation of N2 by resonance scattering of electrons, J. Phys. B 4, 53–70 (1971).

    CAS  Google Scholar 

  46. J. Mazeau, F. Gresteau, R.I. Hall, G. Joyez, and J. Reinhardt, Electron impact excitation of N2. I. Resonance phenomena associated with the A 3u + and B 3Πg valence states, J. Phys. B 6, 862–872 (1973).

    CAS  Google Scholar 

  47. A. Huetz, I. Čadež, F. Gresteau, R.I. Hall, D. Vichon, and J. Mazeau, Formation and decay of the first 2Πu state of N2 , Phys. Rev. A 21, 622–628 (1980).

    CAS  Google Scholar 

  48. J. Mazeau, F. Gresteau, R.I. Hall, and A. Huetz, Energy and width of N(3 P) from observation of its formation by dissociative attachment, J. Phys. B 11, L557–L560 (1978).

    CAS  Google Scholar 

  49. A. Huetz, F. Gresteau, and J. Mazeau, Dissociative attachment in N2, J. Phys. B 13, 3275–3284 (1980).

    CAS  Google Scholar 

  50. A. Huetz, F. Gresteau, R.I. Hall, and J. Mazeau, Initial vibrational state dependence of resonant excitation and “dissociative attachment” in electron-N2 scattering, J. Chem. Phys. 72, 5297–5304 (1980).

    CAS  Google Scholar 

  51. J. Mazeau, F. Gresteau, G. Joyez, J. Reinhardt, and R.I. Hall, Resonances in electron scattering from CO, J. Phys. B 5, 1890–1897 (1972).

    CAS  Google Scholar 

  52. J.D. Jackson, Classical Electrodynamics, John Wiley and Sons, New York (1967).

    Google Scholar 

  53. F.H. Read and G.L. Whiterod, Electron impact spectroscopy. I. The determination of the symmetry species of molecular excited states, Proc. Phys. Soc. 82, 434–442 (1963).

    CAS  Google Scholar 

  54. F.H. Read and G.L. Whiterod, Electron impact spectroscopy. III. Calculated crosssections for inelastic scattering from benzene, Proc. Phys. Soc. 85, 71–77 (1965).

    CAS  Google Scholar 

  55. H. Boersch, J. Geiger, and M. Topschowsky, Rotational structure in the energy loss spectrum of H2, Phys. Lett. 17, 266–267 (1965).

    CAS  Google Scholar 

  56. A. Hamnett, W. Stoll, G. Branton, C.E. Brion, and M.J. Van Der Wiel, A kinematic and experimental investigation of the (e, 2e) simulation of photoelectron spectroscopy, J. Phys. B 9, 945–957 (1976).

    CAS  Google Scholar 

  57. R. Huebner, R.J. Celotta, S.R. Mielczarek, and C.E. Kuyatt, Electron energy-loss spectroscopy of acetone vapor, J. Chem. Phys. 59, 5434–5443 (1973).

    CAS  Google Scholar 

  58. J. Geiger and B. Schroeder, Intensity perturbations due to configuration interaction observed in the electron energy-loss spectrum of N2, J. Chem. Phys. 50, 7–11 (1969).

    CAS  Google Scholar 

  59. R.E. Huffman, Y. Tanaka, and J.C. Larrabee, Absorption coefficients of nitrogen in the 1000–580 Å wavelength range, J. Chem. Phys. 39, 910–925 (1963).

    CAS  Google Scholar 

  60. E.N. Lassettre, F.M. Glaset, V.D. Meyer, and A. Skerbele, Determination of molecular excitation potentials by election impact. An anomaly in the N2 spectrum, J. Chem. Phys. 42, 3429–3435 (1965).

    CAS  Google Scholar 

  61. V.D. Meyer, A. Skerbele, and E.N. Lassettre, Intensity distribution in the N2 (b 1Πu) ←X 1g +transition, J. Chem. Phys. 43, 3769–3771 (1965).

    CAS  Google Scholar 

  62. G.M. Lawrence, D.L. Mickey, and K. Dressier, Absolute oscillator strengths of the strongest bands within the dipole-allowed absorption spectrum of nitrogen, J. Chem. Phys. 48, 1989–1994 (1968).

    CAS  Google Scholar 

  63. F.H. Read, Doppler and other broadening effects in electron scattering experiments, J. Phys. B 8, 1034–1040 (1975).

    Google Scholar 

  64. K.H. Tan, C.E. Brion, P.E. Van Der Leeuw, and M.J. Van Der Wiel, Absolute oscillator strengths (10–60 eV) for the photoabsorption, photoionization and fragmentation of H2O, Chem. Phys. 29, 299–309 (1978).

    CAS  Google Scholar 

  65. R.B. Kay, Ph.E. Van Der Leeuw, and M.J. Van Der Wiel, Absolute oscillator strengths for the shape resonance near the K edges of N2 and CO, J. Phys. B 10, 2513–2519 (1977).

    CAS  Google Scholar 

  66. C. Backx and M.J. Van Der Wiel, Coincidence measurements with electron impact excitation, in Vacuum Ultraviolet Radiation Physics (E. Koch, R. Haensel, and C. Kunz, eds.), pp. 137–153, Pergamon Press, Oxford (1974).

    Google Scholar 

  67. M.J. Van Der Wiel, Inner-shell excitation of molecules by electron impact, in Electronic and Atomic Collisions (N. Oda and K. Takayanagi, eds.), pp. 209–218, North-Holland, Amsterdam (1980).

    Google Scholar 

  68. R. Huebner, R.J. Celotta, S.R. Mielczarek, and C.E. Kuyatt, Energy absorption by N2 O in the 4 to 14 eV region, J. Chem. Phys. 63, 4490–4494 (1975).

    CAS  Google Scholar 

  69. C.E. Kuyatt, S.R. Mielczarek, and M.J. Weiss, Intensities of infra-red transitions in N2O and H2CO by electron impact spectroscopy, J. Chem. Phys. 65, 3481–3485 (1976).

    CAS  Google Scholar 

  70. G.C. King and J.W. McConkey, Electron energy-loss spectroscopy in the chlorofluoro-methanes, J. Phys. B 11, 1861–1877 (1978).

    CAS  Google Scholar 

  71. E.N. Lassettre, A. Skerbele, and M.A. Dillon, Generalized oscillator strength for 11 S→21 P transition in helium: Theory of limiting oscillator strengths, J. Chem. Phys. 50, 1829–1839 (1969).

    CAS  Google Scholar 

  72. E.N. Lassettre and S.M. Silverman, Inelastic collision cross-sections of carbon monoxide, J. Chem. Phys. 40, 1256–1261 (1964).

    CAS  Google Scholar 

  73. W.M. Huo, Limiting slope of the generalized oscillator strengths vs. momentum transfer curve, J. Chem. Phys. 71, 1593–1600 (1979).

    CAS  Google Scholar 

  74. E.N. Lassettre, Power series representation of generalized oscillator strengths, J. Chem. Phys. 43, 4479–4486 (1965).

    CAS  Google Scholar 

  75. L. Vriens, J.A. Simpson, and S.R. Mielczarek, Tests of Born approximations: Differential and total 23 S,2l P and 21S cross-sections for excitation of He by 100 to 400eV electrons, Phys. Rev. 165, 7–15 (1968).

    CAS  Google Scholar 

  76. G.R. Wight, C.E. Brion, and M.J. Van Der Wiel, K-shell energy loss spectra of 2.5 keV electrons in N2 and CO, J. Electron Spectrosc. 1, 457–469 (1972/3).

    Google Scholar 

  77. J.L. Dehmer and D. Dill, Molecular effects on inner-shell photoabsorption K-shell spectrum of N2, J. Chem. Phys. 65, 5327–5334 (1976).

    CAS  Google Scholar 

  78. A.P. Hitchcock and C.E. Brion, Inner-shell excitation and EXAFS-type phenomena in the chloromethanes, J. Electron Spectrosc. 14, 417–441 (1978).

    CAS  Google Scholar 

  79. J.L. Dehmer and D. Dill, Connections between molecular photoionization and electron-molecule scattering with emphasis on shape resonances, in Symposium on Electron—Molecule Collisions (I. Shimamura and M. Matsuzawa, eds.), pp. 95–104, Univ. of Tokyo, Tokyo (1979).

    Google Scholar 

  80. G.C. King, F.H. Read, and M. Tronc, Investigation of the energy and vibrational structure of the inner-shell (Is)−1 (2pπ) 1Π state of N2 by electron impact with high resolution, Chem. Phys. Lett. 52, 50–54 (1977).

    CAS  Google Scholar 

  81. O. Keski-Rahkonen and M.O. Krause, Total and partial atomic-level widths, At. Data Nucl. Data Tables 14, 139–146 (1974).

    CAS  Google Scholar 

  82. G. Herzberg, Molecular Spectra and Molecular Structure, Van Nostrand, Princeton (1950).

    Google Scholar 

  83. F.H. Read and G.C. King, Inner-shell excited states of molecules, in Symposium on Electron-Molecule Collisions (I. Shimamura and M. Matsuzawa, eds.), pp. 155–162, Univ. of Tokyo, Tokyo (1979).

    Google Scholar 

  84. M.J.-A. Prins, La structure des discontinuités d’absorption de quelques gaz dans la région intermédiaire (10–100 Å), Physica 1, 1174–1180 (1934).

    CAS  Google Scholar 

  85. M. Nakamura, M. Sasanuma, S. Sato, M. Watanabe, H. Yamashita, Y. Iguchi, A. Ejiri, S. Nakai, S. Yamaguchi, T. Sagawa, Y. Nakai, and T. Oshio, Absorption structure near the L 2,3 edge of argon gas, Phys. Rev. Lett. 21, 1303–1305 (1968).

    CAS  Google Scholar 

  86. W.H.E. Schwartz, X-ray absorption spectroscopy on free molecules, Angew Chem. Int. Ed. 13, 454–465 (1974).

    Google Scholar 

  87. D.E. Cade, K.D. Sales, and A.C. Wahl, Electronic structure of diatomic molecules III A. Hartree-Fock wavefunctions and energy quantities for N2 and N2, J. Chem. Phys. 44, 1973–2003 (1966).

    CAS  Google Scholar 

  88. D. Shaw, G.C. King, and F.H. Read, An investigation of inner-shell excited states near the L 2,3 edges of Cl2 using electron impact with high resolution, J. Phys. B 13, L723–L728 (1980).

    CAS  Google Scholar 

  89. G.C. King, M. Tronc, F.H. Read, and R.C. Bradford, An investigation of the structure near the L 2,3 edges of argon, the M 4,5 edges of krypton, and the N 4,5 edges of xenon, using electron impact with high resolution, J. Phys. B 10, 2479–2495 (1977).

    CAS  Google Scholar 

  90. A. Kupperman, W.M. Flicker, and O.A. Mosher, Electronic spectroscopy of polyatomics by low-energy variable-angle electron impact, Chem. Rev. 79, 77–89 (1979).

    Google Scholar 

  91. K.N. Klump and E.N. Lassettre, Energy transfer cross-sections in relation to generalized oscillator strengths for the donor-acceptor pair benzene-acetone, J. Chem. Phys. 68, 886–895 (1978).

    CAS  Google Scholar 

  92. A. Kupperman, J.K. Rice, and S. Trajmar, Low-energy, high-angle electron-impact spectroscopy, J. Phys. Chem. 72, 3894–3903 (1968).

    Google Scholar 

  93. D.C. Cartwright, A. Chutjian, S. Trajmar, and W. Williams, Electron impact excitation of the electronic states of N2, Phys. Rev. A 16, 1013–1040 (1977).

    CAS  Google Scholar 

  94. D.C. Cartwright, S. Trajmar, W. Williams, and D.L. Huestis, Selection rule for ∑+−∑ transitions in electron-molecule collisions, Phys. Rev. Lett. 27, 704–707 (1971).

    CAS  Google Scholar 

  95. W.A. Goddard, D.L. Huestis, D.C. Cartwright, and S. Trajmar, Group-theoretical selection rules for electron-impact spectroscopy, Chem. Phys. Lett. 11, 329–333 (1971).

    CAS  Google Scholar 

  96. D.G. Wilden and J. Comer, High resolution electron impact studies of electric dipole forbidden transitions of benzene, J. Phys. B 13, 627–640 (1980).

    CAS  Google Scholar 

  97. M.B. Robin, Higher Excited States of Polyatomic Molecules, Academic Press, London (1975).

    Google Scholar 

  98. R.N. Compton, R.H. Heubner, D.W. Reinhardt, and L.G. Christophorou, Threshold electron impact excitation of atoms and molecules: Detection of triplet and temporary negative ions, J. Chem. Phys. 48, 901–909 (1968).

    CAS  Google Scholar 

  99. J.P. Doering, Electronic energy levels of benzene below 7 eV, J. Chem. Phys. 67, 4065–4070 (1977).

    CAS  Google Scholar 

  100. J.P. Doering, Low-energy electron-impact study of the first, second, and third triplet states of benzene, J. Chem. Phys. 51, 2866–2870 (1979).

    Google Scholar 

  101. D.G. Wilden, J. Comer, and S. Taylor, Energy-loss spectroscopy of the higher excited states of acetylene, J. Phys. B 13, 2849–2857 (1980).

    CAS  Google Scholar 

  102. D.G. Wilden and J. Comer, Rydberg states of C2H4 and C2D4: Assignments using the technique of low-energy electron energy-loss spectroscopy, J. Phys. B 13, 1009–1021 (1980).

    CAS  Google Scholar 

  103. D. Vichon, R.I. Hall, F. Gresteau, and J. Mazeau, Observation of the a 4Π and b 4 states of NO by electron-impact spectroscopy, J. Mol. Spectrosc. 69, 341–350 (1978).

    CAS  Google Scholar 

  104. G. Joyez, R.I. Hall, J. Reinhardt, and J. Mazeau, Low-energy electron spectroscopy of N2 in the 11.8–13.8 eV energy range, J. Electron Spectrosc. 2, 183–190 (1973).

    CAS  Google Scholar 

  105. J. Mazeau, C. Schermann, and G. Joyez, Low-energy electron spectroscopy of CO in the 10.600–14.400 eV energy-loss range, J. Electron Spectrosc. 7, 269–279 (1975).

    CAS  Google Scholar 

  106. S. Cvejanović and F.H. Read, A new technique for threshold excitation spectroscopy, J. Phys. B 7, 1180–1193 (1974).

    Google Scholar 

  107. J. Jureta, S. Cvejanović, J.N.H. Brunt, and F.H. Read, Threshold electron spectroscopy of krypton atoms, J. Phys. B 11, L347–L351 (1978).

    CAS  Google Scholar 

  108. P. Hammond, J. Jureta, S.J. Buckman, G.C. King, and F.H. Read, Threshold electron spectroscopy of CO and N2 using the penetrating field technique, private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Hall, R.I., Read, F.H. (1984). Molecular Spectroscopy by Electron Scattering. In: Shimamura, I., Takayanagi, K. (eds) Electron-Molecule Collisions. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2357-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2357-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9443-6

  • Online ISBN: 978-1-4613-2357-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics