Skip to main content

Dissociation of Molecules by Slow Electrons

  • Chapter
Electron-Molecule Collisions

Abstract

At a first glance it might appear unlikely that the nuclei within a molecule can be separated in a collision with such a light particle as an electron. However, according to the Born—Oppenheimer principle, the effective potential controlling the motion of the nuclei is given by the eigenvalues of the electronic Hamiltonian. Thus, a change in the electronic structure of the molecule can have a profound effect on the nuclear motion, and an electronic transition will often be accompanied by vibrational excitation or dissociation of the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References and Notes

  1. J.A. Schiavone, D.E. Donohue, D.R. Herrick, and R.S. Freund, Electron-impact excitation of helium; Cross sections, n and l distributions of high Rydberg states, Phys. Rev. A 16,48(1977).

    CAS  Google Scholar 

  2. L. Julien, M. Glass-Maujean, and J.P. Descoubes, On the dissociation of the H2 molecule following electron impact and leading to the obtention of atomic hydrogen in the n = 3 levels, J. Phys. B 6, L196 (1973).

    CAS  Google Scholar 

  3. M. Glass-Maujean, Dissociative excitation of H2 by electron impact, Comments At. Mol. Phys. 7, 83 (1977).

    CAS  Google Scholar 

  4. M. Glass-Maujean, Abstracts, Fourth International Conference on Atomic Physics (Heidelberg, 1974), p. 260.

    Google Scholar 

  5. R.S. Freund, J.A. Schiavone, and D.F. Brader, Dissociative excitation of H2: Spectral line shapes and electron impact cross sections of the Balmer lines, J. Chem. Phys. 64, 1122 (1976).

    CAS  Google Scholar 

  6. T.R. Connor and M.A. Biondi, Dissociative recombination in neon: Spectral line-shape studies, Phys. Rev. A 140, 778 (1965).

    CAS  Google Scholar 

  7. J. Allison, T. Kondow, and R.N. Zare, Laser-induced fluorescence measurement of the nascent rotational distribution of N+ 2(X 2+ g) formed by electron impact on N2, Chem. Phys. Lett. 64, 202 (1979).

    CAS  Google Scholar 

  8. G. Glocker, W.P. Baxter, and R.H Dalton, The activation of hydrogen by electron impact, J. Am. Chem. Soc. 49, 58 (1927).

    Google Scholar 

  9. A. Hughes and A.M. Skellet, Dissociation of hydrogen by electrons, Phys. Rev. 30, 11 (1927).

    CAS  Google Scholar 

  10. S.J.B. Corrigan, Dissociation of molecular hydrogen by electron impact, J. Chem. Phys. 43, 4381 (1965).

    CAS  Google Scholar 

  11. H.F. Winters, Ionic adsorption and dissociation cross sections for nitrogen, J. Chem. Phys. 44, 1472 (1966).

    CAS  Google Scholar 

  12. H.F. Winters, Dissociation of methane by electron impact, J. Chem. Phys. 63, 3462 (1975).

    CAS  Google Scholar 

  13. H.F. Winters, Dissociation of ethane by electron impact, Chem. Phys. 36, 353 (1979).

    CAS  Google Scholar 

  14. E. Teloy, Transactions of the Third International Vacuum Congress (H. Adam, ed.), p. 613, Pergamon Press, New York (1967).

    Google Scholar 

  15. D. Beck and O. Osberghaus, The mass spectrum of the fragments from section collisions with molecules, Z. Phys. 160, 406 (1960).

    CAS  Google Scholar 

  16. D. Beck, Neutral fragments from hydrocarbons under electron impact, Discuss. Faraday Soc. 36, 56 (1964).

    CAS  Google Scholar 

  17. D. Beck and A. Niehaus, Reactions of excited butane molecules, J. Chem. Phys. 37, 2705 (1962).

    CAS  Google Scholar 

  18. H. Genzel and O. Osberghaus, Dissociation of some chromatic molecules by electron impact, Z. Naturforsch. A 22, 331 (1967).

    CAS  Google Scholar 

  19. C.E. Melton, Higher transmission and dual electron beam ion sources for mass spectro-metry, J. Sci. Instrum. 43, 927 (1966).

    CAS  Google Scholar 

  20. C.E. Melton, The mass spectrometer as a radiolytic and catalytic laboratory, Int. J. Mass Spectrom. Ion Phys. 1, 353 (1968).

    CAS  Google Scholar 

  21. C.E. Melton, Study by mass spectrometry of the decomposition of ammonia by ionizing radiation in a wide-range radiolysis source, J. Chem. Phys. 45, 4414 (1966).

    CAS  Google Scholar 

  22. C.E. Melton and P.S. Rudolph, Radiolysis of methane in a wide-range radiolysis source of a mass spectrometer: I. Individual and total cross sections for the production of positive ions, negative ions, and free radicals by electrons, J. Chem. Phys. 47, 1771 (1967).

    CAS  Google Scholar 

  23. C.E. Melton, Radiolysis of water vapor in a wide range radiolysis source of a mass spectrometer, J. Phys. Chem. 74, 582 (1970).

    CAS  Google Scholar 

  24. A. Niehaus, Excitation and dissociation of molecules by electron impact, Z. Natur-forsch. A 22, 690 (1967).

    CAS  Google Scholar 

  25. F.W. Lampe and A. Niehaus, Ionization potentials of free radicals formed by electron impact, J. Chem. Phys. 49, 2949 (1968).

    CAS  Google Scholar 

  26. R.A. Saunders, J.T. Larkins, and F.E. Saalfield, Detection of the neutral fragments produced in an electron impact, Int. J. Mass Spectrom. Ion Phys. 3, 203 (1969).

    CAS  Google Scholar 

  27. F.J. Preston, M. Tsuchiya, and H.J. Svec, A mass spectrometer for the detection of neutral species formed by electron impact, Int. J. Mass Spectrom. Ion Phys. 3, 323 (1969).

    CAS  Google Scholar 

  28. J.R. Reecher, G.D. Flesch, and J.J. Svec, A mass spectrometer for the characterization of neutral species produced in the electron bombardment of gases, Int. J. Mass Spectrom. Ion Phys. 19, 351 (1976).

    Google Scholar 

  29. R. Marx, G. Mauclaire, and M. Wallart, Formation of radicals in the gas phase by slow electron impact, J. Chem. Phys. 1680 (1971).

    Google Scholar 

  30. L.S. Polak and D.I. Slovetsky, Production of free radicals from electron impact collisions with hydrocarbons, Int. J. Radiat. Phys. Chem. 8, 257 (1976).

    CAS  Google Scholar 

  31. N.I. Butkovskaya, M.N. Larichev, I.O. Leipunskii, I.I. Morozov, I. Yu. Razuvaen, and V.L. Tal’rose, Dokl. Akad. Nauk SSSR No. 233, 398 (1977).

    Google Scholar 

  32. S. Chung and C.C. Lin, Application of the close-coupling method to excitation of electronic states and dissociation of H2 by electron impact, Phys. Rev. A 17, 1874 (1978).

    CAS  Google Scholar 

  33. T.N. Rescigno, C.W. McCurdy, Jr., V. McKoy, and C.F. Bender, Low energy electron-impact excitation of the hydrogen molecule. Phys. Rev. A 13, 216 (1976).

    CAS  Google Scholar 

  34. N. Böse, Excitation function of a 3+ gb 3+ u light emission in H2 measured by monoenergetic electrons, J. Phys. 5,11, L83 (1978).

    Google Scholar 

  35. J.F.M. Aarts, C.I.M. Beenakker, and F.J. de Heer, Radiation from CH4 and C2 H4 produced by electron impact, Physica (Utrecht) 53, 32 (1971).

    CAS  Google Scholar 

  36. D.E. Donohue, J.A. Schiavone, and R.S. Freund, Molecular dissociation by electron impact: Optical emission from fragments of methane, ethylene, and methanol, J. Chem. Phys. 67, 769 (1977).

    CAS  Google Scholar 

  37. J.A. Schiavone, S.M. Tarr, and R.S. Freund, High-Rydberg atomic fragments from electron-impact dissociation of molecules, J. Chem. Phys. 70, 4468 (1979).

    CAS  Google Scholar 

  38. D. Rapp and P. Golden, Total cross section for ionization and attachment in gases by electron impact. I. Positive ionization, J. Chem. Phys. 43, 1464 (1965).

    CAS  Google Scholar 

  39. R.L. Platzman, Superexcited states of molecules, Radiat. Res. 17, 419 (1962).

    CAS  Google Scholar 

  40. D.A. Vroom and F.J. de Heer, Production of excited hydrogen atoms by impact of fast electrons on some simple hydrocarbons, J. Chem. Phys. 50, 580 (1969).

    CAS  Google Scholar 

  41. R.L. Platzman, Superexcited states of molecules, and the primary action of ionizing radiation, Vortex 23, 372 (1962).

    CAS  Google Scholar 

  42. F.J. de Heer, Superexcited states of molecules produced by electron impact, Int. J. Radiat. Phys. Chem. 7, 137 (1975).

    Google Scholar 

  43. H. Nakamura, Branching ratio for preionization and predissociation of a superexcited state of a diatomic molecule, Chem. Phys. Lett. 33, 151 (1975).

    CAS  Google Scholar 

  44. A. Giusti-Suzor, Application of quantum defect theory to preionization, predissociation, and dissociative recombination, in Physics of Electronic and Atomic Collisions, Invited Papers of Twelfth International Conference on the Physics of Electronic and Atomic Collisions. Gatlinburg, Tennessee, July 1981 (S. Datz, ed.), p. 381, North-Holland, Amsterdam (1982).

    Google Scholar 

  45. A.W. Fliflet and V.B. McKoy, Distorted-wave-approximation cross sections for excitation of the b 3+ u states of H2 by low-energy electron impact, Phys. Rev. A 21,1863 (1980). 45a. C.A. Weatherford, Excitation of the b 3+ u state of H2 by electron impact: Semi-classical exchange potentials at intermediate energies, Phys. Rev. A 22, 2519 (1980).

    CAS  Google Scholar 

  46. A.W. Fliflet, V. McKoy, and T.N. Rescigno, Dissociation of F2 by electron impact excitation of the lowest 3п u electronic state, Phys. Rev. A 21, 788 (1980).

    CAS  Google Scholar 

  47. P.M.S. Blackett and J. Franck, Excitation spectrum of hydrogen by electron collisions, Z. Phys. 34, 389 (1925).

    CAS  Google Scholar 

  48. W.E. Lamb, Jr., and R.C. Retherford, Fine structure of the hydrogen atom, Phys. Rev. 79, 549 (1950).

    CAS  Google Scholar 

  49. W.L. Fite and R.T. Brackmann, Collisions of electrons in the hydrogen atoms. II. Excitation of L α radiation, Phys. Rev. 112, 1151 (1958).

    CAS  Google Scholar 

  50. W.E. Lamb, Jr., and T.M. Sanders, Fine structure of short-lived state of hydrogen by a microwave-optical method. I., Phys. Rev. 119, 1901 (1960).

    CAS  Google Scholar 

  51. L.R. Wilcox and W.E. Lamb, Jr., Fine structure of short-lived states of hydrogen by a microwave-optical method. II., Phys. Rev. 119, 1915 (1960).

    CAS  Google Scholar 

  52. E.R. Williams, J.V. Martinez, and G.H. Dunn, Dissociative excitation of hydrogen by electron impact, Bull. Am. Phys. Soc. 12, 233 (1967).

    Google Scholar 

  53. F J. de Heer, H.R. Moustafa Moussa, and M. Inokuti, Production of Lyman-a radiation in collisions of electrons on molecular hydrogen (0.05-3 keV), Chem. Phys. Lett. 1, 484 (1967).

    Google Scholar 

  54. K. Burrows and G.H. Dunn, Isotope effects in the dissociative excitation of H2 and D2, Bull. Am. Phys. Soc. 13, 215 (1968).

    Google Scholar 

  55. D.A. Vroom and F.J. de Heer, Production of excited atoms by impact of fast electrons on molecular hydrogen and deuterium, J. Chem. Phys. 50, 580 (1969).

    CAS  Google Scholar 

  56. W.R. Ott, C.E. Kauppila, and W.L. Fite, Polarization of Lyman-a radiation emitted in electron collisions with hydroxyl atoms and molecules, Phys. Rev. A 1, 1089 (1970).

    Google Scholar 

  57. L.D. Weaver and R.H. Hughes, Production of n = 3 and n = 4 states of atomic hydrogen by electron impact, J. Chem. Phys. 52, 2299 (1970).

    CAS  Google Scholar 

  58. M.J. Mumma and E.C. Zipf, Dissociative excitation of vacuum ultraviolet emission features by electron impact on molecular gases. I. H2 and O2, J. Chem. Phys. 55, 1661 (1971).

    CAS  Google Scholar 

  59. J.W. McConkey and F.G. Donaldson, Vacuum ultraviolet excitation of H(2p) by electron impact on H2, Can. J. Phys. 50, 2211 (1972).

    CAS  Google Scholar 

  60. J.D. Walker, Jr., and R.M. St. John, Design of high intensity atomic hydrogen sources and determination of Balmer cross sections, J. Chem. Phys. 61, 2394 (1974).

    CAS  Google Scholar 

  61. G. Khayrallah and S.J. Smith, Production of excited hydrogen atoms (n = 3, 4, 5) in dissociative excitation of molecular hydrogen by electron impact, in Proceedings of Ninth International Conference on Physics of Electronic and Atomic Collisions, p. 808(1975).

    Google Scholar 

  62. G.A. Khayrallah, Electron impact dissociation of molecular hydrogen and deuterium: Production of atomic hydrogen and deuterium α, β, and γ Balmer lines, Phys. Rev. A 13, 1989(1976).

    CAS  Google Scholar 

  63. R.S. Freund, J.A. Schiavone, and D.F. Bader, Dissociative excitation of H2: Spectral line shapes and electron impact cross sections of the Balmer lines, J. Chem. Phys. 64, 1122(1976).

    Google Scholar 

  64. G.R. Möhlmann, F.J. de Heer, and J. Los, Emission cross sections of Balmerα, β, γ radiation for electrons (0-2000 eV) on H2 and D2, Chem. Phys. 25, 103 (1977).

    Google Scholar 

  65. C. Karolis and E. Harting, Electron impact dissociation cross sections in hydrogen and deuterium, leading to Balmer alpha and beta emission, J. Phys. B 11, 357 (1978).

    Google Scholar 

  66. G.R. Möhlmann and F.J. de Heer, Production of Balmer radiation by electron impact (0-2000 eV) on small hydrogen-containing molecules, Chem. Phys. 40, 157 (1979).

    Google Scholar 

  67. N. Böse and F. Linder, Threshold excitation in H2 and D2 by electron impact and predissociation of triplet states measured by electron-photon coincidence, J. Phys. B 12, 3805 (1979).

    Google Scholar 

  68. M. Higo and T. Ogawa, Translational energy distribution of excited deuterium atoms produced by controlled electron impact on D2, Chem. Phys. 56, 15 (1981).

    CAS  Google Scholar 

  69. G.A. Khayrallah and S.J. Smith, The cross section for production of the 3s state of atomic hydrogen in dissociative excitation of H2 by electrons, Chem. Phys. Lett. 48, 289 (1977).

    CAS  Google Scholar 

  70. D.E. Gerhart, Comprehensive optical and collisional data for radiation action. I. H2, J. Chem. Phys. 62, 821 (1975).

    CAS  Google Scholar 

  71. H.A. Bethe and E.E. Salpeter, Quantum Mechanics of One and Two Electron Atoms, Springer-Verlag, Berlin (1975).

    Google Scholar 

  72. J.D. Carriére and F.J. de Heer, Cross sections for Lyman-α radiation, J. Chem. Phys. 56, 2993 (1972).

    Google Scholar 

  73. A. Weingartshofer, E.M. Clark, J.K. Holmes, and J.W. McGowan, Resonances and their effects above and below the electron impact ionization threshold of H2, J. Phys. B 8,1552 (1975).

    CAS  Google Scholar 

  74. A.U. Hazi, Distribution of final state resulting from autoionization of the 1g state of H3 and D2, J. Chem. Phys. 60, 4358 (1974).

    CAS  Google Scholar 

  75. C. Böttcher and K. Docken, Autoionizing states of the hydrogen molecules, J. Phys. B 7, L5 (1974).

    Google Scholar 

  76. C. Böttcher, Dissociative ionization of the hydrogen molecule, J. Phys. B 7, L352 (1974);Proc. R. Soc. London, Ser. A 340, 301 (1974).

    Google Scholar 

  77. R.S. Freund, J.A. Schiavone, and D.F. Baden, Dissociative excitation of H2: Spectral line shapes and electron impact cross sections of the Balmer lines, J. Chem. Phys. 64, 1122(1976).

    CAS  Google Scholar 

  78. M. Glass-Maujean, L. Julien, and Ti Dohnalik, Stark-induced anticrossings in hydrogen: Experimental study, measurement of the 2 P 3/22 D 3/2 Lamb shifts in H (n = 3 and 4), J. Phys. B 11, 421 (1978).

    CAS  Google Scholar 

  79. M. Glass-Maujean and J.P. Descoubes, Calculations of Stark-mixing signals resulting from second-order coupling in hydrogenic atoms, Opt. Commun. 4, 365 (1972).

    Google Scholar 

  80. M. Glass-Maujean, Electron impact dissociation of H2 and D2 studied from the anticrossing signals and by the Doppler-profile technique, J. Phys. B 11, 431 (1978).

    CAS  Google Scholar 

  81. L. Julien, M. Glass-Maujean, and J.P. Descoubes, On the dissociation of the H2 molecule following electron impact and leading to the obtention of atomic hydrogen in the n = 2 levels, J. Phys. B 6, L196 (1973).

    CAS  Google Scholar 

  82. H. Wieder and T.G. Eck, Anticrossing signals in resonance fluorescence, Phys. Rev. 153, 103 (1967).

    CAS  Google Scholar 

  83. K. Ito, N. Oda, Y. Hatano, and T. Tsuboi, Doppler profile measurements of Balmer-α radiation by electron impact on H2, Chem. Phys. 17, 35 (1976).

    CAS  Google Scholar 

  84. K. Ito, N. Oda, Y. Hatano, and T. Tsuboi, The electron energy dependence of the Doppler profiles of the Balmer-a emission from H2, D2, CH4, and other simple hydrocarbons by electron impact, Chem. Phys. 21, 203 (1977).

    CAS  Google Scholar 

  85. D.A. Vroom and F.J. de Heer, Production of excited hydrogen atoms by impact of fast electrons on some simple hydrocarbons, J. Chem. Phys. 50, 573 (1969).

    CAS  Google Scholar 

  86. D.A. Vroom and F.J. de Heer, Production of excited hydrogen atoms by impact of fast electrons on water vapor, J. Chem. Phys. 50, 1883 (1969).

    CAS  Google Scholar 

  87. C.I.M. Beenakker and F.J. de Heer, Dissociative excitation of some aliphatic hydrocarbons by electron impact, Chem. Phys. 7, 130 (1975).

    CAS  Google Scholar 

  88. C.I.M. Beenakker and F.J. de Heer, Dissociative excitation of benzene by electron impact, Chem. Phys. Lett. 29, 89 (1974).

    CAS  Google Scholar 

  89. C.I.M. Beenakker, F.J. de Heer, H.B. Krop, and G.R. Möhlmann, Dissociative excitation of water by electron impact, Chem. Phys. 6, 445 (1975).

    Google Scholar 

  90. G.R. Möhlmann and F.J. de Heer, Emission cross section of Hα and CH(A 2△→X 2II) radiation for electron impact on hydrocarbons, Chem. Phys. 19, 233 (1977).

    Google Scholar 

  91. G.R. Möhlmann, K.K. Bhutani, K.H. Shima, and F.J. de Heer, to be published.

    Google Scholar 

  92. D.E. Donohue, J.A. Schiavone, and R.S. Freund, Molecular dissociation by electron impact: Optical emission from fragments of methane, ethylene, and methanol, J. Chem. Phys. 67, 769 (1977).

    CAS  Google Scholar 

  93. I. Fujita, M. Hatada, T. Ogawa, and K. Hirota, The emission spectra of hydrogen atoms produced from methanol by electron impact, Bull. Chem. Soc. Jpn. 44, 1751 (1971).

    CAS  Google Scholar 

  94. I. Tokue, I. Nishiyama, and K. Kuchitsu, Isotope effects for the emission impurities of the hydrogen Balmer lines produced in the electron impact dissociation of CH3CN and CD3CN, Chem. Phys. Lett. 35, 69 (1975).

    CAS  Google Scholar 

  95. T. Ogawa, M. Higo, M. Toyoda, and N. Ishibashi, Isotope effects in the emission cross section of the Balmer lines (β, γ, δ) produced by controlled electron impact on HC1 and DC1, Chem. Lett. Chem. Soc. Jpn. p. 493 (1978).

    Google Scholar 

  96. O.J. Orient and S.K. Srivastava, Cross section for L-α emission by electron impact on methane, Chem. Phys. 54, 183 (1981).

    CAS  Google Scholar 

  97. M. Leventhal, R.T. Robiscoe, and K.R. Lea, Velocity distributions of metastable H atoms produced by dissociative excitation of H2, Phys. Rev. 158, 49 (1967).

    CAS  Google Scholar 

  98. R. Clampitt, H(2s) atoms produced by dissociative excitation of molecules, Phys. Lett. A 28, 581 (1969).

    CAS  Google Scholar 

  99. R. Clampitt and A.S. Newton, Metastable species produced by electron impact excitation of N2, H2, N2O, and CO2, J. Chem. Phys. 50, 1997 (1969).

    CAS  Google Scholar 

  100. M. Misakian and J.C. Zorn, Final states in the dissociative excitation of molecular hydrogen, Phys. Rev. Lett. 27, 174 (1971).

    CAS  Google Scholar 

  101. M. Misakian and J.C. Zorn, Dissociative excitation of molecular hydrogen by electron impact, Phys. Rev. A 6, 2180 (1972).

    CAS  Google Scholar 

  102. J.W. Czarnik and C.E. Fairchild, New data on the velocity distribution of H(2s) atoms produced by dissociative excitation of H2, Phys. Rev. Lett. 26, 807 (1971).

    CAS  Google Scholar 

  103. M.J. Mumma and E.C. Zipf, Dissociative excitation of vacuum ultraviolet emission features by electron impact on molecular gases. I. H2 and O2, J. Chem. Phys. 55, 1661 (1971).

    CAS  Google Scholar 

  104. B.L. Carnahan and E.C. Zipf, Dissociative excitation of H2, HD, and D2 by electron impact, Phys. Rev. A 16, 991 (1977).

    CAS  Google Scholar 

  105. S.R. Ryan, J.J. Spezeski, O.F. Kaiman, W.E. Lamb, Jr., L.C. McIntyre, Jr., and W.H. Wing, Time-of-flight study of H(2S) and D(2S) produced by electron impact on H2, D2, and HD: Evidence for predissociation, Phys. Rev. A 19, 2192 (1979).

    CAS  Google Scholar 

  106. J.J. Spezeski, O.F. Kaiman, and L.C. Mclntyre, Jr., Time-of-flight study of H(2s) and D(2s) produced by electron impact on H2 and D2: Fast peaks, Phys. Rev. A 22, 1906 (1980).

    CAS  Google Scholar 

  107. A.U. Hazi and K. Wiemers, Velocity distribution of H(2s) resulting from the electron impact dissociation of H2, J. Chem. Phys. 66, 5296 (1977).

    CAS  Google Scholar 

  108. K. Kirby, S. Guberman, and A. Dalgarno, Resonant dissociative photoionization of H2, J. Chem. Phys. 70, 4635 (1979).

    CAS  Google Scholar 

  109. R. Clampitt, H(2s) atoms produced by dissociative excitation of molecules, Phys. Lett. 28A. 581 (1969).

    Google Scholar 

  110. R.S. Freund and W. Klemperer, Molecular beam time-of-flight measurements for the study of metastable and repulsive electronic states, J. Chem. Phys. 47, 2897 (1967).

    CAS  Google Scholar 

  111. R.S. Freund, Dissociation of CO2 by electron impact with the formation of metastable CO(a 3II) and O(5 S), J. Chem. Phys. 55, 3569 (1971).

    CAS  Google Scholar 

  112. R. Clampitt and A.S. Newton, Metastable species produced by electron excitation of N2, H2, N2O, and CO2, J. Chem. Phys. 50, 1997 (1969).

    CAS  Google Scholar 

  113. CA. Barth, W.G. Fastie, C.W. Hord, J.B. Pearce, K.K. Kelly, A.I. Stewart, G.E. Thomas, P.G. Anderson, and O.F. Raper, Mariner 6: Ultraviolet spectrum of Mars’s upper atmosphere, Science 165, 1004 (1969).

    CAS  Google Scholar 

  114. S.E. Kupriyanov, Detection of HeH+ ions and long-lived highly excited molecular and atomic states, Zh. Eksp. Teor. Fiz. 49, 467 (1965) [Sov. Phys. JETP 21, 311 (1965)].

    Google Scholar 

  115. S.E. Kupriyanov, Formation of highly excited atoms in electron collisions with CO, O2, and N2, Zh. Eksp. Teor. Fiz. 55, 460 (1968) [Sov. Phys. JETP 28, 240 (1969)].

    CAS  Google Scholar 

  116. R.S. Freund, Dissociation by electron impact of oxygen into metastable quintet and long-lived high-Rydberg atoms, J. Chem. Phys. 54, 3125 (1971).

    CAS  Google Scholar 

  117. K.C. Smyth, J.A. Schiavone, and R.S. Freund, Dissociative excitation of N2 by electron impact: Translational spectroscopy of long-lived high-Rydberg fragment atoms, J. Chem. Phys. 59, 5225 (1973).

    CAS  Google Scholar 

  118. K.C. Smyth, J.A. Schiavone, and R.S. Freund, Dissociative excitation of CO by electron impact: Translational spectroscopy of long-lived high-Rydberg fragment atoms, J. Chem. Phys. 60, 1358 (1974).

    CAS  Google Scholar 

  119. J.A. Schiavone, D.E. Donohue, and R.S. Freund, Molecular dissociation by electron impact: High-Rydberg fragments from methane, ethylene, and ethane, J. Chem. Phys. 67, 759 (1977).

    CAS  Google Scholar 

  120. T.G. Finn, B.L. Carnahan, W.C. Wells, and E.C. Zipf, Dissociation of CH4 and CD4 by electron impact: Production of metastable and high-Rydberg hydrogen and carbon fragments, J. Chem. Phys. 63, 1596 (1975).

    CAS  Google Scholar 

  121. W.C. Wells, W.L. Borst, and E.C. Zipf, Translational spectroscopy of metastable fragments produced by dissociative excitation of atmospheric gases by electron impact. I. Nitrogen, Phys. Rev. A 14, 695 (1976).

    CAS  Google Scholar 

  122. W.C. Wells and E.C. Zipf, Translational spectroscopy of metastable fragments produced by dissociative excitation of chlorine, J. Chem. Phys. 66, 5828 (1977).

    CAS  Google Scholar 

  123. J.A. Schiavone, S.M. Tarr, and R.S. Freund, High-Rydberg atomic fragments from electron-impact dissociation of molecules, J. Chem. Phys. 70, 4468 (1979).

    CAS  Google Scholar 

  124. J.A. Schiavone, D.E. Donohue, D.R. Herrick, and R.S. Freund, Electron-impact excitation of helium: Cross sections, n and l distributions of high-Rydberg states, Phys. Rev. A 16, 48 (1977).

    CAS  Google Scholar 

  125. J.A. Schiavone, S.M. Tarr, and R.S. Freund, Electron-impact excitation of the raregas atoms to high-Rydberg states, Phys. Rev. A 20, 71 (1979).

    CAS  Google Scholar 

  126. W. Bleakney, The ionization of hydrogen by single electron impact, Phys. Rev. 35, 1180 (1930).

    CAS  Google Scholar 

  127. W.W. Lozier, A study of the velocities of H+ ions formed in hydrogen by dissociation following electron impact, Phys. Rev. 36, 1285 (1930).

    CAS  Google Scholar 

  128. G.H. Dunn and L.J. Kieffer, Dissociative ionization of H2: A study of angular distributions and energy distribution of resultant fast protons, Phys. Rev. 132, 2109 (1963).

    CAS  Google Scholar 

  129. L.J. Kieffer and G.H. Dunn, Dissociative ionization of H2, Phys. Rev. 158, 61 (1967).

    CAS  Google Scholar 

  130. R.J. van Brunt and L.J. Kieffer, Angular distribution of protons and deuterons produced by dissociative ionization of H2 and D2 near threshold, Phys. Rev. A 2, 1293 (1970).

    Google Scholar 

  131. A. Crowe and J.W. McConkey, Experimental evidence for new dissociation channels in electron-impact ionization of H2, Phys. Rev. Lett. 31, 192 (1973).

    CAS  Google Scholar 

  132. A. Crowe and J.W. McConkey, Dissociative ionization by electron impact. I. Protons from H2, J. Phys. B 6, 2088 (1973).

    CAS  Google Scholar 

  133. J.A.D. Stockdale, V.E. Anderson, A.E. Carter, and L. Deleanu, Dissociative ionization of molecules by electron impact. I. Apparatus and kinetic energy distributions of D+ ions from D2, J. Chem. Phys. 63, 3886 (1975).

    CAS  Google Scholar 

  134. K. Köllmann, Dissociative ionization of H2, N2, and CO by electron impact — measurement of kinetic energy, angular distributions, and appearance potentials, Int. J. Mass Spectrom. Ion Phys. 17, 261 (1975).

    Google Scholar 

  135. K. Köllmann, Energetic protons from autoionizing states of H2, J. Phys. B 11, 339 (1978).

    Google Scholar 

  136. B. van Wingerden, Ph. E. Van Der Leeuw, F.J. de Heer, and M.J. Van Der Wiel, Partial oscillator strengths (25–40 eV) for repulsive states of D2 (H2), J. Phys. B 12, 1559 (1979).

    Google Scholar 

  137. J.P. Johnson and J.L. Franklin, Kinetic energies and angular distributions of H+ ions produced by electron impact on H2, Int. J. Mass Spectrom. Ion Phys. 33, 393 (1980).

    Google Scholar 

  138. M.D. Burrows, L.C. Mclntyre, Jr., S.R. Ryan, and W.E. Lamb, Jr., Dissociative ionization of H2, D2, and HD using electron-impact excitation, Phys. Rev. A 21, 1841 (1980).

    CAS  Google Scholar 

  139. M. Landau, R.I. Hall, and F. Pichou, Proton production from H2 by electron impact excitation of autoionizing states near threshold, J. Phys. B 14, 1509 (1981).

    CAS  Google Scholar 

  140. G.H. Dunn, Anisotropies in angular distributions of molecular dissociation products, Phys. Rev. Lett. 8, 62 (1962).

    Google Scholar 

  141. The four poles of a quadrupole mass spectrometer are connected to both AC and DC voltages. The rf voltage, V, and dc voltage, U, are given by V = 7.22mf 2 r 2 0 U = 1.22mf 2 r 2 0, where f is the rf frequency (megacycles/s), m is the mass (amu), and r 0 is the radius tangent to the four poles (cm). For m = 23, f= 1.6 and r 0 = 3, V= 2826 V, and U = 635 V. These are rather large voltages; however, a given Rydberg atom will not see the full voltage and resulting field since the pole voltages alternate plus, minus, plus, minus.

    Google Scholar 

  142. S. Strathdee and R. Browning, Dissociative photoionization of H2 at 26.9 eV, J. Phys. B 9, L505 (1976); Dissociative photoionization of H2: Proton kinetic energy spectra, J. Phys. B 12, 1789 (1979).

    CAS  Google Scholar 

  143. R.M. Wood, A.K. Edwards, and M.F. Steven, Dissociative ionization of H2 and D2 produced by bombardment with fast He+ ions, Phys. Rev. A 15, 1433 (1977).

    CAS  Google Scholar 

  144. T.F. O’Malley, Some diabatic (quasistationary) states of small diatomic systems— projected atomic orbitals, J. Chem. Phys. 51, 322 (1969).

    Google Scholar 

  145. C. Bottcher, Dissociative recombination of the hydrogen molecular ion, J. Phys. B 9, 2899 (1976).

    CAS  Google Scholar 

  146. A.U. Hazi, Comment on the dissociative ionization of H2, J. Phys. B 8, L262 (1975).

    CAS  Google Scholar 

  147. W.D. Robb, private communication (1980).

    Google Scholar 

  148. H. Takagi and H. Nakamura, Elastic scattering of electrons from H2 + and studies of related dynamic processes, in Abstracts of Contributed Papers, Twelfth International Conference on the Physics of Electronic and Atomic Collisions, Gatlinburg, Tennessee, June 1981, p.457.

    Google Scholar 

  149. A.U. Hazi, private communication (1981).

    Google Scholar 

  150. A.U. Hazi, Stieltjes moment method for calculating resonance widths, in Electron-Molecule and Photon-Molecule Collisions (T. Rescigno, V. McKoy, and B. Schneider, eds.), p. 281, Plenum Press, New York (1979).

    Google Scholar 

  151. K. Kirby, T. Uzer, A.C. Allison, and A. Dalgarno, Dissociative photoionization of H2 at 26.9 eV and 30.5 eV, J. Chem. Phys. 75, 2820 (1981).

    CAS  Google Scholar 

  152. F. Fiquet-Fayard and O. Gallais, Predissociation of H2 and D2 (D 1Πu): Comparison of calculated and experimental line widths, Chem. Phys. Lett. 16, 18 (1972).

    CAS  Google Scholar 

  153. P. Borrell, P.M. Guyon, and M. Glass-Maujean, H2 and D2 photon impact predissociation, J. Chem. Phys. 66, 818 (1977).

    CAS  Google Scholar 

  154. M. Glass-Maujean, J. Breton, and P.M. Guyon, Accidental predissociation of the 4pπ 1Πu + state of H2, Phys. Rev. Lett. 40, 181 (1978).

    CAS  Google Scholar 

  155. J. Durup, On isotope effects in the predissociation of HD, J. Phys. (Para) 39, 941 (1978).

    CAS  Google Scholar 

  156. R. Colle, MQDT analysis of predissociation. I. A two-channel problem with semiclassical scattering parameters, J. Chem. Phys. 74, 2910 (1981).

    CAS  Google Scholar 

  157. M. Raoult and Ch. Jungen, Calculation of vibrational preionization in H2 by multichannel quantum defect theory: Total and partial cross sections and photoelectron angular distributions, J. Chem. Phys. 74, 3388 (1981).

    CAS  Google Scholar 

  158. H. Takagi and H. Nakamura, Autoionization of highly excited Rydberg states of diatomic molecules, J. Chem. Phys. 74, 5808 (1981).

    CAS  Google Scholar 

  159. L.J. Kieffer, G.M. Lawrence, and J.M. Slater, in Proceedings of Seventh International Conference on the Physics of Electronic and Atomic Collisions, Amsterdam (1971), p. 574.

    Google Scholar 

  160. J.A.D. Stockdale and L. Deleanu, Dissociative ionization of O2 and N2 by electron impact; N+ and O+ kinetic energies and angular distributions, Chem. Phys. Lett. 22, 204 (1973).

    CAS  Google Scholar 

  161. J.A.D. Stockdale and L. Deleanu, Vibrational structure in kinetic energy spectra of O+ ions from electron impact dissociative ionization of O2: Predissociation of the B 2g state of O2 +, Chem. Phys. Lett. 28, 588 (1974).

    CAS  Google Scholar 

  162. J. Schopman and R. Locht, The observation of predissociation in the oxygen molecular ion by low-energy electron impact, Chem. Phys. Lett. 26, 596 (1974).

    CAS  Google Scholar 

  163. R. Locht and J. Schopman, The dissociative ionization in oxygen, Int. J. Mass Spectrom. Ion Phys. 15, 361 (1964).

    Google Scholar 

  164. R.S. Freund, Dissociation by electron impact of oxygen into metastable quintet and long-lived high-Rydberg atoms, J. Chem. Phys. 54, 3125 (1971).

    CAS  Google Scholar 

  165. P.H. Doolittle, R.I. Schoen, and K.E. Schubert, Dissociative photoionization of O2, J. Chem. Phys. 49, 5108 (1968).

    CAS  Google Scholar 

  166. K. Köllman, Dissociative ionization of H2, N2, and CO by electron impact: Measurement of kinetic energy, angular distributions, and appearance potentials, Int. J. Mass Spectrom. Ion Phys. 17, 261 (1975).

    Google Scholar 

  167. L.J. Kieffer and R.J. van Brunt, Energetic ions from N2 produced by electron impact, J. Chem. Phys. 46, 2728 (1967).

    CAS  Google Scholar 

  168. A. Crowe and J.W. McConkey, Dissociative ionization by electron impact. II. N+ and N++ from N2, J. Phys. B 6, 2108 (1973).

    CAS  Google Scholar 

  169. L. Deleanu and J.A.D. Stockdale, Dissociative ionization of molecules by electron impact. II. Kinetic energy and angular distributions of N+ and N++ ions from N2, J. Chem. Phys. 63, 3898 (1975).

    CAS  Google Scholar 

  170. J.N. Bardsley and F. Mandl, Resonant scattering of electrons by molecules, Rep. Prog. Phys. 31, 471 (1968).

    CAS  Google Scholar 

  171. GJ. Schulz, Resonances in electron impact on diatomic molecules, Rev. Mod. Phys. 45, 423(1973).

    CAS  Google Scholar 

  172. R.N. Compton and R.H. Huebner, Collisions of low-energy electrons with molecules: Threshold excitation and negative-ion formation, in Radiation Chemistry (M. Burton and J.L. Magee, eds.), Vol. 2, p. 281, Wiley-Interscience, New York (1970).

    Google Scholar 

  173. J.N. Bardsley and J.S. Cohen, Variational calculations of resonant states of H2 , J. Phys. 511, 3645 (1978).

    Google Scholar 

  174. J.M. Wadehra and J.N. Bardsley, Vibrational-and rotational-state dependence of dissociative attachment in e-H2 collisions, Phys. Rev. Lett. 41, 1795 (1978).

    CAS  Google Scholar 

  175. J.N. Bardsley and J.M. Wadehra, Dissociative attachment and vibrational excitation in low-energy collisions of electrons with H2 and D2, Phys. Rev. A 20, 1398 (1979).

    CAS  Google Scholar 

  176. M. Allan and S.F. Wong, Effect of vibrational and rotational excitation on dissociative attachment in hydrogen, Phys. Rev. Lett. 41, 1791 (1978).

    CAS  Google Scholar 

  177. J.C.Y. Chen and J.L. Peacher, Survival probability in dissociative attachment, Phys. Rev. 163, 103 (1967).

    CAS  Google Scholar 

  178. M. Bacal and G.W. Hamilton, H and D production in plasmas, Phys. Rev. Lett. 42, 1538 (1979).

    CAS  Google Scholar 

  179. M. Tronc, R.I. Hall, C. Schermann, and H.S. Taylor, Interference in dissociative attachment cross sections of H2 around 14 eV, J. Phys. B 12, L279 (1979).

    CAS  Google Scholar 

  180. M. Tronc, F. Fiquet-Fayard, C. Schermann, and R.I. Hall, Differential cross sections and angular distributions of H from dissociative electron attachment to H2 between 3.75 eV and 13 eV, J. Phys. B 10, 305 (1977).

    CAS  Google Scholar 

  181. H. Hiraoka, R.K. Nesbet, and L.W. Welsh, Experimental observations of the negative atomic nitrogen ion, Phys. Rev. Lett. 39, 130 (1977).

    CAS  Google Scholar 

  182. D. Spence and P.D. Burrow, Resonant dissociation of N2 by electron impact, J. Phys. B 12, L179 (1979).

    CAS  Google Scholar 

  183. J. Mazeau, F. Gresteau, R.I. Hall, and A. Huetz, Energy and width of N(3P) from observation of its formation by dissociative attachment to N2 and NO, J. Phys. B 11, L557 (1978).

    CAS  Google Scholar 

  184. A. Huetz, F. Gresteau, and J. Mazeau, Dissociative attachment in N2, J. Phys. B 13, 3275 (1980).

    CAS  Google Scholar 

  185. A. Huetz, F. Gresteau, R.I. Hall, and J. Mazeau, Initial vibrational state dependence of resonant excitation and dissociative attachment in electron-N2 scattering, J. Chem. Phys. 72, 5297 (1980).

    CAS  Google Scholar 

  186. A. Huetz, I. Cadez, F. Gresteau, R.I. Hall, D. Vichon, and J. Mazeau, Formation and decay of the first 2Πu state of N2 , Phys. Rev. A 21, 622 (1980).

    CAS  Google Scholar 

  187. I. Cadez and F. Fayard, The calculation of cross sections for some resonant excitation, VIII ICPEAC Abstracts (B.C. Cobic and M.V. Kurepa, eds.), p. 454, Institute of Physics, Belgrade (1974).

    Google Scholar 

  188. L.D. Thomas and R.K. Nesbet, Low-energy electron scattering by atomic nitrogen, Phys. Rev. A 12, 2369 (1975).

    CAS  Google Scholar 

  189. B. Hird and S.P. Ali, Existence of the negative ion of atomic nitrogen, Phys. Rev. Lett. 41, 540 (1978).

    CAS  Google Scholar 

  190. R.J. van Brunt and L.J. Kieffer, Angular distribution of O from dissociative electron attachment to O2, Phys. Rev. A 2, 1899 (1970).

    Google Scholar 

  191. M. Krauss, D. Neumann, A.C. Wahl, G. Das, and W. Zemke, Excited electronic states of O2 , Phys. Rev. A 7, 69 (1973).

    CAS  Google Scholar 

  192. G. Das, A.C. Wahl, W.T. Zemke, and W.C. Stwalley, Accurate ab initio potential curves for tht X 2Πg, A 2Πu, a 4u and 2u states of the O2 ion, J. Chem.Phys. 68, 4252 (1978).

    CAS  Google Scholar 

  193. W.R. Henderson, W.L. Fite, and R.T. Brackmann, Dissociative attachment of electrons to hot oxygen, Phys. Rev. 183, 157 (1969).

    CAS  Google Scholar 

  194. D. Spence and G.J. Schulz, Temperature dependence of dissociative attachment in O2 and CO2, Phys. Rev. 188, 280 (1969).

    CAS  Google Scholar 

  195. T.F. O’Malley, Calculation of dissociative attachment in hot O2, Phys. Rev. 155, 59 (1967).

    Google Scholar 

  196. P.D. Burrow, Dissociative attachment from the O2(a 1g) state, J. Chem. Phys. 59, 4922 (1973).

    CAS  Google Scholar 

  197. D.S. Belic and R.I. Hall, Dissociative electron attachment to metastable oxygen (a 1g), J. Phys. B 14, 365 (1981).

    CAS  Google Scholar 

  198. P.J. Chantry, private communication (1978).

    Google Scholar 

  199. B.I. Schneider and CA. Brau, Dissociative attachment of electrons by F2, Appl. Phys. Lett. 33, 569 (1978).

    CAS  Google Scholar 

  200. J.N. Bardsley, C. Derkits, and J.M. Wadehra, Dissociative attachment in HC1, DC1, and F2, to be published.

    Google Scholar 

  201. R.J. Hall, Dissociative attachment and vibrational excitation of F2 by slow electrons, J. Chem. Phys. 68, 1803 (1978).

    CAS  Google Scholar 

  202. D.W. Trainor and J.H. Jacob, Electron dissociative attachment rate constant for F2 and NF3 at 300 and 500°K, Appl. Phys. Lett. 35, 920 (1979).

    CAS  Google Scholar 

  203. A.U. Hazi, A.E. Orel, and T.N. Rescigno, Ab initio study of dissociative attachment of low-energy electrons to F2, Phys. Rev. Lett. 46, 918 (1981).

    CAS  Google Scholar 

  204. W.C. Tarn and S.F. Wong, Dissociative attachment of halogen molecules by 0–8 eV electrons, J. Chem. Phys. 68, 5626 (1978).

    Google Scholar 

  205. M.V. Kurepa and D.S. Belic, Dissociative attachment of electrons to chlorine molecules, Chem. Phys. Lett. 49, 608 (1977).

    CAS  Google Scholar 

  206. T.N. Rescigno and C. Bender, The stability of the F2 ion: A model for dissociative attachment, J. Phys. B 9, L329 (1976).

    CAS  Google Scholar 

  207. M.V. Kurepa, D.S. Babic, and D.S. Belie, Electron-bromine-molecule total ionisation and electron attachment cross sections, J. Phys. B 14, 375 (1981).

    CAS  Google Scholar 

  208. F.K. Truby, Temperature dependence of attachment in I2 vapor, Phys. Rev. 188, 508 (1969).

    CAS  Google Scholar 

  209. E.J. Shipsey, Thermal-energy dissociative attachment of I2; detection of the curve crossing point for the experimental measurements, J. Chem. Phys. 52, 2274 (1970).

    CAS  Google Scholar 

  210. D.T. Birtwistle and A. Modinos, Dissociative attachment in iodine, J. Phys. B 11, 2949(1978).

    CAS  Google Scholar 

  211. H.L. Brooks, S.R. Hunter, and K.J. Nygaard, Temperature dependence of the electron attachment coefficient in iodine, J. Chem. Phys. 71, 1870 (1979).

    CAS  Google Scholar 

  212. J.P. Ziesel, I. Nenner, and G.J. Schulz, Negative ion formation, vibrational excitation, and transmission spectroscopy in hydrogen halides, J. Chem. Phys. 63, 1943 (1975).

    CAS  Google Scholar 

  213. R. Azria, L. Roussier, R. Paineau, and M. Tronc, Attachment electronique dissociatif sur HC1 et DC1, Rev. Phys. Appl. 9, 469 (1974).

    CAS  Google Scholar 

  214. F. Fiquet-Fayard, Theoretical investigation of dissociative attachment in HC1 and DC1, J. Phys. B 7, 810 (1974).

    CAS  Google Scholar 

  215. F. Fiquet-Fayard, Theoretical problems in the interpretation of dissociative attachment experiments, Vacuum 24, 533 (1974).

    CAS  Google Scholar 

  216. M. Allan and S.F. Wong, Dissociative attachment from vibrationally and rotationally excited HC1 and HF, J. Chem. Phys. 74, 1687 (1981).

    CAS  Google Scholar 

  217. H.S. Taylor, E. Goldstein, and G.A. Segal, Resonance states of HC1 and electron-HCl scattering processes, J. Phys. B 10, 2253 (1977).

    CAS  Google Scholar 

  218. R. Azria, M. Tronc, Y. LeCoat, and D. Simon, Differential cross section for negative ion formation in HCl, XI ICPEAC Abstracts, p. 360, Kyoto (1979).

    Google Scholar 

  219. R. Abouaf and D. Teillet-Billy, Predissociations in the dissociative attachment processes leading to C/CO and F/FH, XI ICPEAC Abstracts, p. 356, Kyoto (1979).

    Google Scholar 

  220. D. Spence and T. Noguchi, Feshbach resonances associated with Rydberg states of the hydrogen halides, J. Chem. Phys. 63, 505 (1975).

    CAS  Google Scholar 

  221. R. Azria, Y. LeCoat, and M. Tronc, Spin-orbit splitting and dynamical coupling for differential H cross section in hydrogen halides, XII ICPEAC Abstracts, p. 411, Gatlinburg, Tennessee (1981).

    Google Scholar 

  222. P J. Chantry, Formation of N2C via ion-molecule reactions in N2O, J. Chem. Phys. 51, 3380 (1969).

    CAS  Google Scholar 

  223. J.N. Bardsley, Negative ions of N2O and CO2, J. Chem. Phys. 51, 3384 (1969).

    CAS  Google Scholar 

  224. M. Tronc, F. Fiquet-Fayard, C. Schermann, and R.I. Hall, Angular distributions of O from dissociative electron attachment to N2O between 1.9 and 2.9 eV, J. Phys. B 10, L459 (1977).

    CAS  Google Scholar 

  225. D.G. Hopper, A.C. Wahl, R.L.C. Wu, and T.O. Tiernan, Theoretical and experimental studies of the N2O and N2O ground state potential energy surfaces. Implications for the O + N2 → N2O + e and other processes, J. Chem. Phys. 65, 5474 (1976)

    CAS  Google Scholar 

  226. R. Abouaf, R. Paineau, and F. Fiquet-Fayard, Dissociative attachment in NO2 and CO2, J.Phys. B 9, 303 (1976).

    CAS  Google Scholar 

  227. P.D. Burrow and L. Sanche, Elastic scattering of low-energy electrons at 180° in CO2, Phys. Rev. Lett. 28, 333 (1972).

    CAS  Google Scholar 

  228. L. Sanche and G.J. Schulz, Electron transmission spectroscopy: Resonances in triatomic molecules and hydrocarbons, J. Chem. Phys. 58, 479 (1973).

    CAS  Google Scholar 

  229. M.J.W. Boness and G.J. Schulz, Vibrational excitation in CO2 via the 3.8 eV resonance, Phys. Rev. A 9, 1969 (1974).

    CAS  Google Scholar 

  230. A. Herzenberg, Oscillatory energy dependence of resonance electron-molecule scattering, J. Phys. B 1, 548 (1968).

    Google Scholar 

  231. W. Domcke and L.S. Cederbaum, A simple formula for the vibrational structure of resonances in electron-molecule scattering, J. Phys. B 10, L47 (1977).

    Google Scholar 

  232. C.R. Claydon, G.A. Segal, and H.S. Taylor, Theoretical interpretation of the electron scattering spectrum of CO2, J. Chem. Phys. 52, 3387 (1970).

    CAS  Google Scholar 

  233. D. Spence and G.J. Schulz, Dissociative electron attachment in CO2, J. Chem. Phys. 60, 216 (1974).

    CAS  Google Scholar 

  234. P.J. Chantry, Temperature dependence of dissociative attachment in N2O, J. Chem. Phys. 51, 3369 (1969).

    CAS  Google Scholar 

  235. J.P. Ziesel, G.J. Schulz, and M. Milhand, S formation by dissociative attachment in OCS and CS2, J. Chem. Phys. 62, 1936 (1975).

    CAS  Google Scholar 

  236. R. Abouaf and F. Fiquet-Fayard, Dissociative attachment in SO2 and OCS: Evidence for vibrational excitation of the SO, O2, and CO fragments, J. Phys. B 9, L323 (1976).

    CAS  Google Scholar 

  237. M. Jungen, J. Vogt, and V. Staemmler, Feshbach resonances and dissociative electron attachment of H2O, Chem. Phys. 37, 49 (1979).

    CAS  Google Scholar 

  238. S. Trajmar and R.I. Hall, Dissociative attachment in H2O and D2O: Energy and angular distribution of H and D fragments, J. Phys. B 7, L458 (1974).

    CAS  Google Scholar 

  239. M. Tronc, S. Gowsand, R. Azria, and F. Fiquet-Fayard, Effects isotopiques dans la formation de H et D par attachement dissociatif sur H2S, HDS, D2S et H2O, HDO, D2O, J. Phys. (Paris) 34, 381 (1973).

    CAS  Google Scholar 

  240. F. Fiquet-Fayard, M. Sizun, and H. Abgrall, Intramolecular isotope effect in dissociations, Chem. Phys. Lett. 37, 72 (1976).

    CAS  Google Scholar 

  241. S. Goursand, M. Sizon, and F. Fiquet-Fayard, Energy partitioning and isotope effects in the fragmentation of triatomic negative ions: Monte Carlo scheme for a classical trajectory study, J. Chem. Phys. 65, 5453 (1976).

    Google Scholar 

  242. A. Huetz and J. Mazeau, Observation of unstable H from the dissociation of H2, J.Phys. 514, L591 (1981).

    Google Scholar 

  243. A. Huetz, Excitation and resonant dissociation of diatomic molecules by electron impact, Thesis, Université-Paris VI (1981).

    Google Scholar 

  244. E. Illenberger, H.V. Scheunemann, and H. Baumgärtel, Negative ion formation in CF2Cl2, CF3C1, and CFC13 following low-energy (0–10 eV) impact with near monoenergetic electrons, Chem. Phys. 37, 21 (1979).

    CAS  Google Scholar 

  245. P. Ausloos, R.E. Rebbert, and L. Glasgow, Photodecomposition of chloromethanes adsorbed on silica surfaces, J. Res. Natl. Bur. Stand. A 82, 1 (1977).

    CAS  Google Scholar 

  246. G.J. Verhaart, H.A. Van Der Hart, and H.H. Brongersma, Electron chemistry. Chemical reactions in CC14, CFC13, and CF2C12 induced by low-energy electrons, Chem. Phys. 1, 389(1980).

    Google Scholar 

  247. V.M. Pejčev, M.V. Kurepa, and I.M. Čadež, Total ionization and electron attachment cross sections of CC12F2 by electron impact, Chem. Phys. Lett. 63, 301 (1979).

    Google Scholar 

  248. W.E. Wentworth, R. George, and H. Keith, Dissociative thermal electron attachment to some aliphatic chloro, bromo, iodo, compounds, J. Chem. Phys. 51, 1791 (1969).

    CAS  Google Scholar 

  249. S.D. Peyerimhoff and R.J. Buenker, Potential curves for dissociative electron attachment of CFC1I3, Chem. Phys. Lett. 65, 434 (1979).

    CAS  Google Scholar 

  250. G.J. Schulz and D. Spence, Temperature dependence of the onset for negative-ion formation in CO2, Phys. Rev. Lett. 22, 47 (1969).

    CAS  Google Scholar 

  251. C.E. Klots and R.N. Compton, Electron attachment to carbon dioxide clusters in a supersonic beam, J. Chem. Phys. 67, 1779 (1977).

    CAS  Google Scholar 

  252. C.E. Klots and R.N. Compton, Electron attachment to Van Der Waals polymers of carbon dioxide and nitrous oxide, J. Chem. Phys. 69, 1636 (1978).

    CAS  Google Scholar 

  253. C.E. Klots and R.N. Compton, Electron attachment to Van Der Waals polymers of water, J. Chem. Phys. 69, 1644 (1978).

    CAS  Google Scholar 

  254. M.J. Boness and G.J. Schulz, Vibrational excitation in CO2 via the 3.8-eV resonance, Phys. Rev. A 9, 1969 (1974).

    CAS  Google Scholar 

  255. R.N. Compton, P.W. Reinhardt, and C.D. Cooper, Collisional ionization of Na, K, Cs by CO2 and CS2: Molecular electron affinities, J. Chem. Phys. 63, 3821 (1975).

    CAS  Google Scholar 

  256. A.R. Rossi and K.D. Jordan, Comment on the structure and stability of (CO2)2, J. Chem. Phys. 70, 4422 (1979).

    CAS  Google Scholar 

  257. M. Armbruster, H. Haberland, and H.-G. Schindler, Negatively charged water clusters, or the first observation of free hydrated electrons, Phys. Rev. Lett. 47, 323 (1981).

    CAS  Google Scholar 

  258. D.R. Bates and H.S.W. Massey, The basic reactions in the upper atmosphere II. The theory of recombination in the ionized layers, Proc. R. Soc. London Ser. A 192, 1 (1947).

    CAS  Google Scholar 

  259. M.A. Biondi and S.C. Brown, Measurement of electron-ion recombination, Phys. Rev. 76, 1697 (1949).

    CAS  Google Scholar 

  260. C.S. Weiler and M.A. Biondi, Recombination attachment and ambipolar diffusion of electrons in photo-ionized NO afterglows, Phys. Rev. 172, 198 (1968).

    Google Scholar 

  261. F.J. Mehr and M.A. Biondi, Electron temperature dependence of recombination of O2 + and N2 + ions with electrons, Phys. Rev. 181, 264 (1969).

    CAS  Google Scholar 

  262. M.T. Leu, M.A. Biondi, and R. Johnsen, Measurements of the recombination of electrons with H3O+· (H2O)n-series ions. Phys. Rev. A 7, 292 (1973).

    CAS  Google Scholar 

  263. M.T. Leu, M.A. Biondi, and R. Johnsen, Measurements of recombination of electrons with HCO+ ions, Phys. Rev. A 8, 420 (1973).

    CAS  Google Scholar 

  264. M.T. Leu, M.A. Biondi, and R. Johnsen, Measurements of recombination of electrons with H3 + and H5 + ions, Phys. Rev. A 8, 413 (1973).

    CAS  Google Scholar 

  265. A.J. Cunningham and R.M. Hobson, Experimental measurements of dissociative recombination in vibrationally excited gases, Phys. Rev. 185, 98 (1969).

    CAS  Google Scholar 

  266. B. Peart and K.T. Dolder, Collisions between electrons and H2 + ions. IV. Measurement of cross sections for dissociative ionization, J. Phys. B 6, 2409 (1973).

    CAS  Google Scholar 

  267. B. Peart and K.T. Dolder, Measurements of cross sections for the dissociative recombination of D2 + ions, J. Phys. B 6, L359 (1973).

    CAS  Google Scholar 

  268. B. Peart and K.T. Dolder, Collisions between electrons and H2 + ions: V. Measurements of cross sections for dissociative recombination, J. Phys. B 7, 236 (1974).

    CAS  Google Scholar 

  269. B. Peart and K.T. Dolder, Measurements of dissociative recombination of H3 + ions, J.Phys. B 7,1948(1974).

    CAS  Google Scholar 

  270. D. Auerbach, R. Cacak, R. Caudano, T.D. Gaily, C.J. Keyser, J. Wm. McGowan, J.B.S. Mitchell, and S.F.J. Wilk, Merged electron-ion beam experiments. I. Method and measurements of (e-H2 +) and (e-H3 +) dissociative-recombination cross sections, J.Phys. B 10, 3797 (1977).

    Google Scholar 

  271. P.M. Mul and J. Wm. McGowan, Merged electron-ion beam experiments. III. Temperature dependence of dissociative recombination for atmospheric ions NO+, O2 +, and N2 +, J. Phys. B 12, 1591 (1979).

    CAS  Google Scholar 

  272. R.A. Phaneuf, D.H. Crandall, and G.H. Dunn, Production of D*(n = 4) from electron-D2 + dissociative recombination, Phys. Rev. A 11, 528 (1975).

    CAS  Google Scholar 

  273. M. Vogler and G.H. Dunn, Dissociative recombination of electrons and D2 + to yield D(2p), Phys. Rev. A 11, 1983 (1975).

    CAS  Google Scholar 

  274. F. von Busch and G.H. Dunn, Photodissociation of H2 + and D2 +: Experiment, Phys. Rev. A 5, 1726 (1972).

    Google Scholar 

  275. F.L. Walls and G.H. Dunn, Measurement of total cross sections for electron recombination with NO+ and O2 + using ion storage techniques, J. Geophys. Res. 79, 1911 (1974).

    CAS  Google Scholar 

  276. R.A. Heppner, F.L. Walls, W.T. Armstrong, and G.H. Dunn, Cross-section measurements for electron-H3O+ recombination, Phys. Rev. A 13, 1000 (1976).

    CAS  Google Scholar 

  277. R.D. DuBois, J.B. Jeffries, and G.H. Dunn, Dissociative recombination cross sections for NH4 + ions and electrons, Phys. Rev. A 17, 1314 (1978).

    CAS  Google Scholar 

  278. D. Mathur, S.V. Khan, and J.B. Hasted, Dissociative recombination in low-energy e-H2 + and e-H3 + collisions, J. Phys. B 11, 3615 (1978).

    CAS  Google Scholar 

  279. D.R. Bates, Dissociative recombination, Phys. Rev. 78, 492 (1950).

    CAS  Google Scholar 

  280. J.N. Bardsley, The theory of dissociative recombination, J. Phys. B 1, 365 (1968).

    Google Scholar 

  281. C. Bottcher, Theory of dissociative recombination and related processes, Proc. R. Soc. London Ser. A 340, 301 (1974).

    CAS  Google Scholar 

  282. A. Giusti, A multichannel quantum defect approach to dissociative recombination, J. Phys. B 13, 3867 (1980).

    CAS  Google Scholar 

  283. T.F. O’Malley, Rydberg levels and structure in dissociative recombination cross sections, J. Phys. B 14, 1229 (1951).

    Google Scholar 

  284. U. Fano, Effects of configuration interaction on intensities and phase shifts, Phys. Rev. 124,1866(1961).

    Google Scholar 

  285. A. Giusti-Suzor, J.N. Bardsley, and C. Derkits, Dissociative recombination in lowenergy e-H2 + collisions, Phys. Rev. A 28, 682 (1983).

    CAS  Google Scholar 

  286. D. Robb, private communication.

    Google Scholar 

  287. K. Rai Dastidar and T.K. Rai Dastidar, Dissociative recombination of H2 +, HD+, and D2 + molecular ions, J. Phys. Soc. Jpn. 46, 1288 (1979).

    Google Scholar 

  288. V.P. Zhdanov and M.I. Chibisov, Dissociative recombination of electrons with molecular ions involving the formation of highly excited atoms, Zh. Eksp. Teor. Fiz. 74, 75 (1978) [Sov. Phys. JETP 47, 38 (1978)].

    CAS  Google Scholar 

  289. C. Derkits, J.N. Bardsley, and J.M. Wadehra, Dissociative recombination in e + H2 + collisions, J. Phys. B 12, L529 (1979).

    CAS  Google Scholar 

  290. B. Peart and K.T. Dolder, Collisions between electrons and H2 + ions. VI. Measurements of cross sections for the simultaneous production of H+ and H, J. Phys. B 8, 1570 (1975).

    CAS  Google Scholar 

  291. P.M. Solomon and W. Klemperer, The formation of diatomic molecules in interstellar clouds, Astrophys. J. 178, 389 (1972).

    CAS  Google Scholar 

  292. P. Frisch, Abundances of interstellar CH and CH+ radicals, Astrophys. J. 173, 301 (1972).

    CAS  Google Scholar 

  293. J.N. Bardsley and B.R. Junker, Dissociative recombination of CH+ ions, Astrophys. J. 183, L135 (1973).

    CAS  Google Scholar 

  294. M. Krauss and P.S. Julienne, Dissociative recombination of e + CH+ (X 1+), Astrophys. J. 183, L139 (1973).

    CAS  Google Scholar 

  295. A. Giusti-Suzor and H. Lefebvre-Brion, The dissociative recombination of CH+ ions, Astrophys. J. 214, L101 (1977).

    CAS  Google Scholar 

  296. A.E.S. Green, P.S. Bagus, A.D. McLean, and Y. Yoshimine, Calculated potential energy curves for CE+, Phys. Rev. A 5, 1614 (1972).

    CAS  Google Scholar 

  297. J.B.A. Mitchell and J.W. McGowan, The dissociative recombination of CH+ X l+ (v = 0), Astrophys. J. 222, L77 (1978).

    CAS  Google Scholar 

  298. T.P. Stecher and D.A. Williams, CH and CH+ formation in ion-molecule reactions, Astrophys. J. 177, L141 (1972).

    CAS  Google Scholar 

  299. M. Elitzur and W.D. Watson, Formation of CH+ in interstellar shocks, Astrophys. J. 222, L141 (1978).

    CAS  Google Scholar 

  300. T. Uzer and A. Dalgarno, private communication.

    Google Scholar 

  301. P.C. Cosby, H. Helm, and J.T. Moseley, Observation of predissociated levels of CH+ (A 1Π1), Astrophys. J. 235, 52 (1980).

    CAS  Google Scholar 

  302. D.G. Torr, M.R. Torr, J.C.G. Walker, A.O. Nier, L.H. Brace, and H.C. Brinton, Recombination of O2 + in the ionosphere, J. Geophys. Res. 81, 5578 (1976).

    CAS  Google Scholar 

  303. D.G. Torr, M.R. Torr, J.C.G. Walker, L.H. Brace, H.C. Brinton, W.B. Hanson, J.H. Hoffman, and M. Oppenheimer, Recombination of NO+ in the atmosphere, Geophys. Res. Lett. 3, 209 (1976).

    CAS  Google Scholar 

  304. N. Orsini, D.G. Torr, H.C. Brinton, L.H. Brace, W.B. Hanson, J.H. Hoffman, and A.O. Nier, Determination of the N2 + rate coefficient in the ionosphere, Geophys. Res. Lett. 4, 431(1977).

    CAS  Google Scholar 

  305. M.A. Biondi, Objections to the N2 + + e dissociative recombination coefficients inferred from analysis of atmosphere explorer measurements, Geophys. Res. Lett. 5, 661 (1978).

    CAS  Google Scholar 

  306. D.G. Torr and N. Orsini, The effect of N2 + recombination on the aeronomic determination of the charge exchange rate coefficient of O+(2D) with N2, Geophys. Res. Lett. 5, 657 (1978).

    CAS  Google Scholar 

  307. A. Dalgarno, Atomic physics from atmospheric and astrophysical studies, Adv. At. Mol. Phys. 15, 37 (1979).

    CAS  Google Scholar 

  308. W.H. Kasner, Study of the temperature dependence of electron-ion recombination in nitrogen, Phys. Rev. 164, 194 (1967).

    CAS  Google Scholar 

  309. A.J. Cunningham and R.M. Hobson, Dissociative recombination at elevated temperatures. IV. N2 + dominated afterglows, J. Phys. B 5, 2328 (1972).

    CAS  Google Scholar 

  310. W.H. Kasner and M.A. Biondi, Electron-ion recombination in nitrogen, Phys. Rev. 137, A317 (1965).

    Google Scholar 

  311. M. Whitaker, M.A. Biondi, and R. Johnsen. Electron temperature dependence of dissociative recombination of electrons with N2 +·N2 dimer ions, Phys. Rev. A 24, 743 (1981).

    CAS  Google Scholar 

  312. C.-M. Huang, M.A. Biondi, and R. Johnsen, Variation of electron-NO+ ion recombination coefficient with electron temperature, Phys. Rev. A 11, 901 (1975).

    CAS  Google Scholar 

  313. CM. Lee, Multichannel dissociative recombination theory, Phys. Rev. A 16, 109 (1977).

    CAS  Google Scholar 

  314. A.J. Cunningham and R.M. Hobson, Dissociative recombination at elevated temperatures. III. O2 + dominated afterglows, J. Phys. B 5, 2320 (1972).

    CAS  Google Scholar 

  315. W.H. Kasner and M.A. Biondi, Temperature dependence of the electron-O2 + ion recombination coefficient, Phys. Rev. 174, 139 (1968).

    CAS  Google Scholar 

  316. E.C. Zipf, The O(1S) state: Its quenching and formation by the dissociative recombination of vibrationally excited O2 + ions, Geophys. Res. Lett. 6, 881 (1979).

    CAS  Google Scholar 

  317. E.C. Zipf, A laboratory study of the dissociative recombination of vibrationally excited O2 + ions, J. Geophys. Res. 85, 4232 (1980).

    CAS  Google Scholar 

  318. S.L. Guberman, Potential curves for dissociative recombination of Oin2+, Int. J. Quant. Chem. Symp. 13, 531 (1979).

    CAS  Google Scholar 

  319. D.R. Bates and E.C. Zipf, The O(1 S) quantum yield from O2 + dissociative recombination, Planet. Space Sci. 28, 1081 (1980).

    CAS  Google Scholar 

  320. T.F. O’Malley, A.J. Cunningham, and R.M. Hobson, Dissociative recombination at elevated temperatures. II. Comparison between theory and experiment in neon and argon afterglows, J. Phys. B 5, 2126 (1972).

    Google Scholar 

  321. A.J. Cunningham, T.F. O’Malley, and R.M. Hobson, On the role of vibrational excitation in dissociative recombination, J. Phys. B 14, 773 (1981).

    CAS  Google Scholar 

  322. Y.J. Shiu, M.A. Biondi, and D.P. Sipler, Dissociative recombination in xenon: Variation of the total rate coefficient and excited state production with electron temperature, Phys. Rev. A 15, 494 (1977).

    CAS  Google Scholar 

  323. Y.J. Shiu and M.A. Biondi, Dissociative recombination in krypton (and argon): Dependence of the total rate coefficient and excited-state production with electron temperature, Phys. Rev A 16, 1817 (1977); ibid. 17, 868 (1978).

    CAS  Google Scholar 

  324. D.R. Bates, Aspects of recombination, Adv. At. Mol. Phys. 15, 235 (1979).

    CAS  Google Scholar 

  325. CM. Huang, M.A. Biondi, and R. Johnsen, Recombination of electrons with NH4 +· (NH3 )n series ions, Phys. Rev. A 14, 984 (1976).

    CAS  Google Scholar 

  326. B.M. Smirnov, Recombination of an electron and a complex ion, Sov. Phys. JETP 45, 731 (1977).

    Google Scholar 

  327. C. Bottcher, Dissociative recombination of large molecular ions, J. Phys. B 11, 3887 (1978).

    Google Scholar 

  328. I. Herbst, What are the products of polyatomic ion-electron dissociative recombination reactions?, Astrophys. J. 222, 508 (1978).

    CAS  Google Scholar 

  329. D.W. Trainor, Dissociative recombination of electrons with hydrogen ions, Chem. Phys. Lett. 55, 361(1978).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Compton, R.N., Bardsley, J.N. (1984). Dissociation of Molecules by Slow Electrons. In: Shimamura, I., Takayanagi, K. (eds) Electron-Molecule Collisions. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2357-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2357-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9443-6

  • Online ISBN: 978-1-4613-2357-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics