Advertisement

Rotational Excitation of Molecules by Slow Electrons

  • Isao Shimamura
Part of the Physics of Atoms and Molecules book series (PAMO)

Abstract

This chapter covers the change in the rotational motion of molecules in collisions with electrons. Other degrees of freedom of the molecular motion may or may not change simultaneously with the rotational motion. The main emphasis will be on collisions at a few electron volts or at lower energies. The discussion, however, will sometimes include higher energies, or will sometimes apply to collisions at any energies. Some qualitative results are applicable even to rotational transitions caused by a wide class of mechanisms including collisions with heavy particles and perturbations by external fields.

Keywords

Differential Cross Section Rotational Transition Integral Cross Section Slow Electron Rotational Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    D.W. Norcross and L.A. Collins, Recent developments in the theory of electron scattering by highly polar molecules, Adv. At. Mol. Phys. 18, 341–397 (1982).Google Scholar
  2. 2.
    W.R. Garrett, Electron interactions with polar molecules, in: Physics of Electronic and Atomic Collisions, XIIth Intern. Conf. Phys. Electron. Atom. Coll., Gatlinburg, Tennessee, July 1981 (S. Datz, ed.), pp. 65–77, North-Holland, Amsterdam (1982).Google Scholar
  3. 3.
    P.G. Burke, Theory of electron molecule collisions, in: Quantum Dynamics of Molecules (R.G. Woolley, ed.), pp. 483–547, Plenum Press, New York (1980).Google Scholar
  4. 4.
    N.F. Lane, The theory of electron-molecule collisions, Rev. Mod. Phys. 52, 29–119 (1980).Google Scholar
  5. 5.
    P.G. Burke, Theory of low energy electron-molecule collisions, Adv. At. Mol. Phys. 15, 471–506 (1979).Google Scholar
  6. 6.
    N. Lane, The state of the theory, in: Electron-Molecule Scattering (S.C. Brown, ed.), Chap. 5, pp. 147–183, John Wiley & Sons, New York (1979).Google Scholar
  7. 7.
    L.A. Collins and D.W. Norcross, Electron collisions with highly polar molecules: Comparison of model, static, and static-exchange calculations for alkali-metal halides, Phys. Rev. A 18, 467–498 (1978).Google Scholar
  8. 8.
    Y. Itikawa, Electron scattering by polar molecules, Phys. Rept. 46, 117–164 (1978).Google Scholar
  9. 9.
    S.S. Bhattacharyya and A.S. Dickinson, Inter-relations between classical cross sections for rotational transitions in sudden atom-molecule collisions, J. Phys. B 12, L521–L524 (1979).Google Scholar
  10. 10.
    P.J. Brussaard and H.A. Tolhoek, Classical limits of Clebsch-Gordan coefficients, Racah coefficients and D lmn (ø,θ,ψ) functions, Physica 23, 955–971 (1957).Google Scholar
  11. 11.
    A.R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton University Press, Princeton, New Jersey (1957). See the third printing with corrections, second edition (1974); note especially that Section 4.1 discussing the symmetric-top functions has been revised. See also M. Bouten, On the rotation operators in quantum mechanics, Physica 42, 572-580 (1969); and AA. Wolf, Rotation operators, Am. J. Phys. 37, 531-536 (1969).Google Scholar
  12. 12.
    I. Shimamura, Moments of the spectra for rotational transitions induced by collisions or by external perturbations, Z. Phys. A 309, 107–117 (1982).Google Scholar
  13. 13.
    H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, Massachusetts (1950).Google Scholar
  14. 14.
    M.E. Rose, Elementary Theory of Angular Momentum, John Wiley & Sons, New York (1957).Google Scholar
  15. 15.
    U. Fano and G. Racah, Irreducible Tensorial Sets, Academic Press, New York (1959).Google Scholar
  16. 16.
    I. Shimamura, Sum rules for the rotational structure in the molecular transition spectrum, J. Phys. B 15, 93–100 (1982).Google Scholar
  17. 17.
    S.I. Drozdov, The scattering of fast neutrons by nonspherical nuclei. I, Sov. Phys. JETP 1, 591–592 (1955) [Transl, of: Zh. Eksp. Teor. Fiz. 28, 734-735 (1955)].Google Scholar
  18. 18.
    D.M. Chase, Adiabatic approximation for scattering processes, Phys. Rev. 104, 838–842 (1956).Google Scholar
  19. 19.
    S.I. Drozdov, Scattering of fast neutrons by nonspherical nuclei. III, Sov. Phys. JETP 3, 759–761 (1956) [Transl, of: Zh. Eksp. Teor. Fiz. 30, 786-788 (1956)].Google Scholar
  20. 20.
    G.F. Chew and M.L. Goldberger, The scattering of elementary particles by complex nuclei-A generalization of the impulse approximation, Phys. Rev. 87, 778–782 (1952).Google Scholar
  21. 21.
    S. Altshuler, Theory of low-energy electron scattering by polar molecules, Phys. Rev. 107, 114–117 (1957).Google Scholar
  22. 22.
    Yu.D. Oksyuk, Excitation of the rotational levels of diatomic molecules by electron impact in the adiabatic approximation, Sov. Phys. JETP 22, 873–881 (1966) [Transl, of: Zh. Eksp. Teor. Fiz. 49, 1261-1273 (1965)].Google Scholar
  23. 23.
    N. Chandra and A. Temkin, Hybrid theory and calculation of e-N2 scattering, Phys. Rev. A 13, 188–203 (1976).Google Scholar
  24. 24.
    B.H. Choi and R.T. Poe, Vibrational and rotational transitions in low-energy electron-diatomic-molecule collisions. II. Hybrid theory and close-coupling theory: An 1z-conserving close-coupling approximation, Phys. Rev. A 16, 1831–1840 (1977).Google Scholar
  25. 25.
    E. Gerjuoy and B.K. Thomas, Applications of the Glauber approximation to atomic collisions, Rep. Prog. Phys. 37, 1345–1431 (1974).Google Scholar
  26. 26.
    M. Shugard and A.U. Hazi, Theory of electron-molecule scattering: Comments on the adiabatic-nuclei approximation, Phys. Rev. A 12, 1895–1902 (1975).Google Scholar
  27. 27.
    R.J. Glauber, High-energy collision theory, in: Lectures in Theoretical Physics, Vol. 1 (W.E. Brittin and L.G. Dunham, eds.), pp. 315–414, Interscience, New York (1959).Google Scholar
  28. 28.
    E.S. Chang and A. Temkin, Rotational excitation of diatomic molecular systems. II H+ 2, J. Phys. Soc. Jpn. 29, 172–179 (1970).Google Scholar
  29. 29.
    I. Shimamura, Systematics in the cross sections for excitation of molecules by electrons, in Symposium on Electron-Molecule Collisions (I. Shimamura and M. Matsuzawa, eds.), pp. 13–30, University of Tokyo, Tokyo (1979).Google Scholar
  30. 30.
    R.K. Nesbet, Energy-modified adiabatic approximation for scattering theory, Phys. Rev. A 19, 551–556 (1979).Google Scholar
  31. 31.
    D.W. Norcross and N.T. Padial, The multipole-extracted adiabatic-nuclei approximation for electron-molecule collisions. Phys. Rev. A 25, 226–238 (1982).Google Scholar
  32. 32.
    T.N. Rescigno, A.E. Orel, A.U. Hazi, and B.V. McKoy, Ab initio study of vibrational excitation of HF by low-energy electrons, Phys. Rev. A 26, 690–693 (1982).Google Scholar
  33. 33.
    A.N. Feldt and M.A. Morrison, Breakdown of the adiabatic-nuclear-rotation approximation for near-threshold e-H2 collisions, J. Phys. B 15, 301–308 (1982).Google Scholar
  34. 34.
    F. Linder and H. Schmidt, Rotational and vibrational excitation of H2 by slow electron impact, Z. Naturforsch. 26a, 1603–1617 (1971).Google Scholar
  35. 35.
    R.W. Crompton, D.K. Gibson, and A.I. Mclntosh, The cross section for the J = 0 → 2 rotational excitation of hydrogen by slow electrons, Aust. J. Phys. 22, 715–731 (1969).Google Scholar
  36. 36.
    S. Hara, Rotational excitation of H2 by slow electrons, J. Phys. Soc. Jpn. 27, 1592–1597 (1969).Google Scholar
  37. 37.
    E.S. Chang and A. Temkin, Rotational excitation of diatomic molecules by electron impact, Phys. Rev. Lett. 23, 399–403 (1969).Google Scholar
  38. 38.
    U. Fano and D. Dill, Angular momentum transfer in the theory of angular distributions, Phys. Rev. A 6, 185–192 (1972).Google Scholar
  39. 39.
    R. Goldflam, D.J. Kouri, and S. Green, On the factorization and fitting of molecular scattering information, J. Chem. Phys. 67, 5661–5675 (1977).Google Scholar
  40. 40.
    V. Khare, On the lz-conserving energy sudden approximation for atom-diatom scattering, J. Chem. Phys. 68, 4631–4640 (1978).Google Scholar
  41. 41.
    DJ. Kouri, Rotational excitation II: Approximation methods, in: Atom-Molecule Collision Theory (R.B. Bernstein, ed.), Chap. 9, pp. 301–358, Plenum Press, New York (1979).Google Scholar
  42. 42.
    E.U. Condon and G.H. Shortley, The Theory of Atomic Spectra, Cambridge University Press, Cambridge (1935).Google Scholar
  43. 43.
    I. Shimamura, State-to-state rotational transition cross sections from unresolved energy-loss spectra, Chem. Phys. Lett. 73, 328–333 (1980).Google Scholar
  44. 44.
    I. Shimamura, Partial-sum rules for and asymmetry between rotational transitions J± ΔJ↟J. Phys. Rev. A 28 1357–1362 (1983).Google Scholar
  45. 45.
    S.F. Wong and L. Dubé, Rotational excitation of N2 by electron impact: l-4eV, Phys. Rev. A 17, 570–576 (1978).Google Scholar
  46. 46.
    S. Green, Rotational excitation of symmetric top molecules by collisions with atoms. II. Infinite order sudden approximation, J. Chem. Phys. 70, 816–829 (1979).Google Scholar
  47. 47.
    D.W. Norcross, Application of the adiabatic-nuclei approximation to energy-loss cross sections for collisions with molecules, Phys. Rev. A 25, 764–772 (1982).Google Scholar
  48. 48.
    N.F. Lane and S. Geltman, Rotational excitation of diatomic molecules by slow electrons: Application to H2, Phys. Rev. 160, 53–67 (1967).Google Scholar
  49. 49.
    S.K. Srivastava, R.I. Hall, S. Trajmar, and A. Chutjian, Pure rotational excitation of H2 at electron impact energies of 3 to 100 eV, Phys. Rev. A 12, 1399–1401 (1975).Google Scholar
  50. 50.
    S.F. Wong and G.J. Schulz, Rotational and vibrational excitation of H2 by electron impact at 4.5 eV: Angular distributions, Phys. Rev. Lett. 32, 1089–1092 (1974).Google Scholar
  51. 51.
    I. Shimamura, Energy loss by slow electrons and by slow atoms in a molecular gas, Phys. Rev. A 23, 3350–3353 (1981).Google Scholar
  52. 52.
    I. Shimamura, Rotational-state dependence of the collisional pumping rate for astro-physical masers, Progr. Theor. Phys. (Kyoto) 68, 178–190 (1982).Google Scholar
  53. 53.
    N. Chandra and A. Temkin, Tabulation of hybrid theory calculated e-N2 vibrational and rotational cross sections, NASA Technical Note, NASA TN D-8347 (1976).Google Scholar
  54. 54.
    L.H. Beard, D.J. Kouri, and D.K. Hoffman, Exact factorization relations, consistency conditions, and the reduction to the ES approximation for the T-matrix, J. Chem. Phys. 76, 3623–3629 (1982).Google Scholar
  55. 55.
    V.N. Ostrovsky and V.I. Ustimov, The connections between the rotational transition cross sections in diatomic molecules, J. Phys. B 14, 1139–1156 (1981).Google Scholar
  56. 56.
    A.D. Buckingham, B.J. Orr, and J.M. Sichel, Angular distribution and intensity in molecular photoelectron spectroscopy I. General theory for diatomic molecules, Phil. Trans. R. Soc. Lond. A 268, 147–157 (1970).Google Scholar
  57. 57.
    J.M. Sichel, Angular distribution and intensity in molecular photoelectron spectroscopy II. Information contained in rotational fine structure, Mol. Phys. 18, 95–100 (1970).Google Scholar
  58. 58.
    H. Ehrhardt and F. Linder, Rotational excitation of H2 by slow electrons in a beam experiment, Phys. Rev. Lett. 21, 419–421 (1968).Google Scholar
  59. 59.
    G. Joyez, J. Comer, and F.H. Read, Resonant rotational excitation of H2 by electron impact, J. Phys. B 6, 2427–2440 (1973).Google Scholar
  60. 60.
    E.S. Chang and S.-F. Wong, Isotope effects in molecular scattering by electrons, Phys. Rev. Lett. 38, 1327–1330 (1977).Google Scholar
  61. 61.
    J. Comer and M. Harrison, Observation of the effects of rotational transitions in the resonant scattering of electrons from N2, J. Phys. B 6, L70–L72 (1973).Google Scholar
  62. 62.
    H. Tanaka, L. Boesten, and I. Shimamura, Experimental determination of state-to-state rotational transition cross sections: e + N2, VIIth Intern. Conf. Atom. Phys., Cambridge, Mass., Book of Abstracts, pp. 43–44 (1980).Google Scholar
  63. 63.
    K. Jung, Th. Antoni, R. Müller, K.-H. Kochern, and H. Ehrhardt, Rotational excitation of N2, CO and H2O by low-energy electron collisions, J. Phys. B 15, 3535–3555 (1982).Google Scholar
  64. 64.
    F.H. Read, Branch structure in rotational excitation by resonant electron molecule collisions, J. Phys. B 5, 255–264 (1972).Google Scholar
  65. 65.
    C. Bottcher, The formalism of electron-molecule scattering, Chem. Phys. Lett. 4, 320–322 (1969).Google Scholar
  66. 66.
    U. Fano, Quantum defect theory of l uncoupling in H2 as an example of channel-interaction treatment, Phys. Rev. A 2, 353–365 (1970): Erratum, Phys. Rev. A 15, 817 (1977).Google Scholar
  67. 67.
    E.S. Chang and U. Fano, Theory of electron-molecule collisions by frame transformations, Phys. Rev. A 6, 173–185 (1972).Google Scholar
  68. 68.
    P.G. Burke, I. Mackey, and I. Shimamura, R-matrix theory of electron_molecule scattering, J. Phys. B 10, 2497–2512 (1977).Google Scholar
  69. 69.
    U. Fano, Unified treatment of collisions, Phys. Rev. A 24, 2402–2415 (1981).Google Scholar
  70. 70.
    W.G. Harter, C.W. Patterson, and F.J. da Paixao, Frame transformation relations and multipole transitions in symmetric polyatomic molecules, Rev. Mod. Phys. 50, 37–83 (1978).Google Scholar
  71. 71.
    A.M. Arthurs and A. Dalgarno, The theory of scattering by a rigid rotator, Proc. R. Soc. A 256, 540–551 (1960).Google Scholar
  72. 72.
    A. Temkin and F.H.M. Faisal, Adiabatic theory of rotational excitation of non-∑ states, Phys. Rev. A 3, 520–521 (1971).Google Scholar
  73. 73.
    N. Chandra, Rotational excitation in e --N2 scattering, J. Phys. B 8, 1338–1348 (1975).Google Scholar
  74. 74.
    P.G. Burke and A.-L. Sinfailam, Electron-molecule interactions II. Scattering by closed-shell diatomic molecules, J. Phys. B 3, 641–659 (1970).Google Scholar
  75. 75.
    N. Chandra, Low-energy electron scattering from CO. II. Ab initio study using the frame-transformation theory, Phys. Rev. A 16, 80–108 (1977).Google Scholar
  76. 76.
    M. Le Dourneuf, Vo Ky Lan, and B.I. Schneider, Vibrational and rotational excitation of molecules by electrons: New developments of the frame transformation theory using the R-matrix and the variable phase methods, in Symposium on Electron-Molecule Collisions (I. Shimamura and M. Matsuzawa, eds.), Appendix, University of Tokyo, Tokyo (1979).Google Scholar
  77. 77.
    Vo Ky Lan, M. Le Dourneuf, and B.I. Schneider, Rotational excitation of diatomic polar molecules by slow electron impact. Practical implementation of the frame transformation theory, in: Electronic and Atomic Collisions, Abstracts of Contributed Papers, XIth Intern. Conf. Phys. Elec. Atom. Coll., Kyoto, 1979 (K. Takayanagi and N. Oda, eds.), pp. 290–291, North-Holland, Amsterdam (1979).Google Scholar
  78. 78.
    N. Chandra, Low-energy electron scattering from CO: III. Analytic method for outer region in frame-transformation theory, J. Phys. B 15, 4465–4476 (1982).Google Scholar
  79. 79.
    C.A. Weatherford and R.J.W. Henry, Frame-transformation approximation for low-energy e --1+ systems using the noniterative integral equation method, Can. J. Phys. 55, 442–451 (1977).Google Scholar
  80. 80.
    E.P. Wigner and L. Eisenbud, Higher angular momenta and long range interaction in resonance reactions, Phys. Rev. 72, 29–41 (1947).Google Scholar
  81. 81.
    A.M. Lane and R.G. Thomas, R-matrix theory of nuclear reactions, Rev. Mod. Phys. 30, 257–353 (1958).Google Scholar
  82. 82.
    R.F. Barrett, B.A. Robson, and W. Tobocman, Calculable methods for many-body scattering, Rev. Mod. Phys. 55, 155–243 (1983).Google Scholar
  83. 83.
    P.G. Burke and W.D. Robb, The R-matrix theory of atomic processes, Adv. At. Mol. Phys. 11, 143–214 (1975).Google Scholar
  84. 84.
    I. Shimamura, R-matrix theories, in Electronic and Atomic Collisions, invited Papers and Progress Reports, The Xth Intern. Conf. Phys. Electron. Atom. Coll., Paris, July 1977 (G. Watel, ed.), pp. 213–230, North-Holland, Amsterdam (1978).Google Scholar
  85. 85.
    C. Bloch, Une formulation unifiée de la théorie des réactions nucléaires, Nucl. Phys. 4, 503–528 (1957).Google Scholar
  86. 86.
    A.M. Lane and D. Robson, Optimization of nuclear resonance reaction calculations, Phys. Rev. 178, 1715–1724 (1969).Google Scholar
  87. 87.
    I. Shimamura, R-matrix theory of atomic continuum processes, J. Phys. B 10, 2597–2618 (1977).Google Scholar
  88. 88.
    B.I. Schneider, R-natrix theory for electron-molecule collisions using analytic basis set expansions. II. Electron-H 2 scattering in the static-exchange model, Phys. Rev. A 11, 1957–1962 (1975).Google Scholar
  89. 89.
    B.I. Schneider, The R-matrix method: Applications to electron-molecule collisions, in Electronic and Atomic Collisions, Invited Papers and Progress Reports, The Xth Intern. Conf. Phys. Electron. Atom. Coll., Paris, July 1977 (G. Watel, ed.), pp. 257–269, North-Holland, Amsterdam (1978).Google Scholar
  90. 90.
    I. Shimamura, Variational R-matrix propagation method-A new numerical method for solving close-coupling equations, in Report of the CECAM Workshop on Electron Molecule Collisions, pp. 69–80, CECAM, Université Paris-Sud, Orsay (1977).Google Scholar
  91. 91.
    B.I. Schneider and R.B. Walker, The coupled channel R-matrix propagation method, J. Chem. Phys. 70, 2466–2470 (1979).Google Scholar
  92. 92.
    K.L. Baluja, P.G. Burke, and L.A. Morgan, R-matrix propagation program for solving coupled second-order differential equations, Comput. Phys. Commun. 27, 299–307 (1982).Google Scholar
  93. 93.
    M. Danos and W. Greiner, Eigenchannel theory of nuclear reactions, Phys. Rev. 146, 708–712 (1966).Google Scholar
  94. 94.
    R.F. Barrett, L.C. Biedenharn, M. Danos, P.P. Delsanto, W. Greiner, and H.G. Wahs-Weiler, The eigenchannel method and related theories for nuclear reactions, Rev. Mod. Phys. 45, 44–108 (1973).Google Scholar
  95. 95.
    U. Fano and CM. Lee, Variational calculation of R matrices. Application to Ar photo-absorption, Phys. Rev. Lett. 31, 1573–1576 (1973).Google Scholar
  96. 96.
    M.J. Seaton, Quantum defect theory I. General formulation, Proc. Phys. Soc. 88, 801–814 (1966).Google Scholar
  97. 97.
    M.J. Seaton, Quantum defect theory II. Illustrative one-channel and two-channel problems, Proc. Phys. Soc. 88, 815–832 (1966).Google Scholar
  98. 98.
    M.J. Seaton, Quantum defect theory, Rep. Prog. Phys. 46, 167–257 (1983).Google Scholar
  99. 99.
    U. Fano, Unified treatment of perturbed series, continuous spectra and cousions, J. Opt. Soc. Am. 65, 979–987 (1975).Google Scholar
  100. 100.
    U. Fano, Evolution of quantum-defect methods, Comments At. Mol. Phys. 10, 223–230 (1981); ibid. 13, 157-169 (1983).Google Scholar
  101. 101.
    R.C. Slater, M.G. Fickes, W.G. Becker, and R.C. Stern, Scattering of alkali halidesby electrons. I. CsF, J. Chem. Phys. 60, 4697–4709 (1974).Google Scholar
  102. 102.
    W.G. Becker, M.G. Fickes, R.C. Slater, and R.C. Stern, Scattering of alkali halides by electrons. II. CsCI, J. Chem. Phys. 61, 2283–2289 (1974).Google Scholar
  103. 103.
    R.C. Slater, M.G. Fickes, W.G. Becker, and R.C. Stern, Scattering of alkali halides by electrons. III. KI, J. Chem. Phys. 61, 2290–2293 (1974).Google Scholar
  104. 104.
    M.R.H. Rudge, S. Trajmar, and W. Williams, Electron scattering by highly polar molecules. I. KI, Phys. Rev. A 13, 2074–2086 (1976).Google Scholar
  105. 105.
    L. Vušković, S.K. Srivastava, and S. Trajmar, Electron scattering by highly polar molecules II. LiF, J. Phys. B 11, 1643–1652 (1978).Google Scholar
  106. 106.
    L. Vušković and S.K. Srivastava, Electron scattering by highly polar molecules III. CsCl, J. Phys. B 14, 2677–2685 (1981).Google Scholar
  107. 107.
    S.K. Srivastava, H. Tanaka, and A. Chutjian, Elastic scattering of intermediate energy electrons by HCN, J. Chem. Phys. 69, 1493–1497 (1978).Google Scholar
  108. 108.
    K. Rohr, Interaction mechanisms and cross sections for the scattering of low-energy electrons from HBr, J. Phys. B 11, 1849–1860 (1978).Google Scholar
  109. 109.
    H. Tanaka, S.K. Srivastava, and A. Chutjian, Absolute elastic differential electron scattering cross sections in the intermediate energy region. IV. CO, J. Chem. Phys. 69, 5329–5333 (1978).Google Scholar
  110. 110.
    S.K. Srivastava, A. Chutjian, and S. Trajmar, Absolute elastic differential electron scattering cross sections in the intermediate energy region. I. H2, J. Chem. Phys. 63, 2659–2665 (1975).Google Scholar
  111. 111.
    T.W. Shyn, W.E. Sharp, and G.R. Carignan, Angular distribution of electrons elasti-cally scattered from CO2, Phys. Rev. A 17, 1855–1861 (1978).Google Scholar
  112. 112.
    T.W. Shyn and G.R. Carignan, Angular distribution of electrons elastically scattered from gases: 1.5-400 eV on N2. II, Phys. Rev. A 22, 923–929 (1980).Google Scholar
  113. 113.
    T.W. Shyn and W.E. Sharp, Angular distributions of electrons elastically scattered from H2, Phys. Rev. A 24, 1734–1740 (1981).Google Scholar
  114. 114.
    D.E. Stogryn and A.P. Stogryn, Molecular multipole moments, Mol. Phys. 11, 371–393 (1966).Google Scholar
  115. 115.
    O.H. Crawford, Scattering of low-energy electrons from polar molecules, J. Chem. Phys. 47, 1100–1104 (1967).Google Scholar
  116. 116.
    Y. Itikawa, Electron-impact rotational excitation of a symmetric-top molecule: Application to NH3, J. Phys. Soc. Jpn. 30, 835–842 (1971).Google Scholar
  117. 117.
    R.C. Stabler, Rotational excitation of molecular ions by slow electrons, Phys. Rev. 131, 679–683 (1963).Google Scholar
  118. 118.
    R.F. Boǐkova and V.D. Ob’edkov, Rotational and vibrational excitation of molecular ions by electrons, Sov. Phys. JETP 27, 772–774 (1968) [Transl, of: Zh. Eksp. Teor. Fiz. 54, 1439-1444 (1968)].Google Scholar
  119. 119.
    S.-I. Chu and A. Dalgarno, Rotational excitation of CH+ by electron impact, Phys. Rev. A 10, 788–792 (1974): Erratum, Phys. Rev. A 12, 725 (1975).Google Scholar
  120. 120.
    S.-I. Chu, Rotational excitation of symmetric-top molecular ions by electron impact, Phys. Rev. A 12, 396–405 (1975).Google Scholar
  121. 121.
    A.S. Dickinson and J.M. Muñoz, Rotational excitation of polar molecular ions by slow electrons, J. Phys. B 10, 3151–3163 (1977).Google Scholar
  122. 122.
    L.D. Landau and E.M. Lifshitz, Quantum Mechanics, 3rd ed., Pergamon Press, Oxford (1977).Google Scholar
  123. 123.
    R.G. Newton, Scattering Theory of Waves and Particles, 2nd ed., Springer-Verlag, New York (1982).Google Scholar
  124. 124.
    N.F. Mott and H.S.W. Massey, The Theory of Atomic Collisions, 3rd ed., Oxford University Press, Oxford (1965).Google Scholar
  125. 125.
    W.M. Frank, D.J. Land, and R.M. Spector, Singular potentials, Rev. Mod. Phys. 43, 36–98 (1971).Google Scholar
  126. 126.
    E.A. Mason, J.T. Vanderslice, and C.J.G. Raw, Quantum effects in small-angle molecular-beam scattering, J. Chem. Phys. 40, 2153–2164 (1964).Google Scholar
  127. 127.
    R.J. Cross, Jr., Classical small-angle scattering from anisotropic potentials, J. Chem. Phys. 46, 609–618 (1967).Google Scholar
  128. 128.
    W.R. Gentry, Ion-dipole scattering in classical perturbation theory, J. Chem. Phys. 60, 2547–2553 (1974).Google Scholar
  129. 129.
    A.S. Dickinson, Differential cross sections for electron scattering by strongly polar molecules, J. Phys. B 10, 967–981 (1977).Google Scholar
  130. 130.
    E.A. Gislason and J.G. Sachs, Differential cross sections from classical perturbation scattering theory. I. Ion-dipole scattering, Chem. Phys. 25, 155–163 (1977).Google Scholar
  131. 131.
    K. Takayanagi, Low-energy electron scattering from strongly polar molecules, Progr. Theor. Phys. (Kyoto) 52, 337–338 (1974).Google Scholar
  132. 132.
    O. Ashihara, I. Shimamura, and K. Takayanagi, Low-energy electron scattering from strongly polar molecules. I. Glauber approximation, J. Phys. Soc. Jpn. 38, 1732–1741 (1975).Google Scholar
  133. 133.
    Y. Itikawa, Low-energy electron scattering from strongly polar molecules. III. Close-coupling calculation for CsF, i. Soc. Jpn. 41, 619–624 (1976).Google Scholar
  134. 134.
    J. Siegel, J.L. Dehmer, and D. Dill, Effects of long-and short-range forces in e-CsCl scattering, J. Phys. B 14, L441–L446 (1981).Google Scholar
  135. 135.
    R.J. Allan and A.S. Dickinson, Electron scattering by state-selected polar molecules, J. Phys. B 13, 3493–3503 (1980).Google Scholar
  136. 136.
    R.J. Allan and A.S. Dickinson, A semiclassical approximation for sudden S-matrix elements in rotational excitation and simple methods for electron scattering by strongly polar molecules, i. B 14, 1675–1694 (1981).Google Scholar
  137. 137.
    C.W. Clark and J. Siegel, Electron-polar-molecule scattering at intermediate values of J: A closed-form treatment, i. B 13, L31–L37 (1980).Google Scholar
  138. 138.
    J. Siegel, J.L. Dehmer, and D. Dill, Differential cross sections for e-LiF scattering, J. Phys. B 13, L215–L219 (1980).Google Scholar
  139. 139.
    J. Siegel, J.L. Dehmer, and D. Dill, Hybrid calculation of electron-polar-molecule scattering: Integrated and momentum-transfer cross sections for LiF, Phys. Rev. A 23, 632–640 (1981).Google Scholar
  140. 140.
    Y. Itikawa, Rotational transition in polar molecules by electron collisions. II. Differential cross sections, J. Phys. Soc. Jpn. 27, 444–452 (1969).Google Scholar
  141. 141.
    O.H. Crawford and A. Dalgarno, The scattering of thermal electrons by carbon monoxide, J. Phys. B 4, 494–502 (1971).Google Scholar
  142. 142.
    D.G. Thompson, The elastic scattering of slow electrons by neon and argon, Proc. R. Soc. (London) A 294, 160–174 (1966).Google Scholar
  143. 143.
    W.C. Fon, P.G. Burke, and A.E. Kingston, Elastic scattering of electrons by atomic hydrogen, J. Phys. B 11, 521–530 (1978).Google Scholar
  144. 144.
    M.H. Mittleman and R.E. von Holdt, Theory of low-energy-electron scattering by polar molecules, Phys. Rev. 140, A726–A729 (1965).Google Scholar
  145. 145.
    M.H. Mittleman, J.L. Peacher, and B.F. Rozsnyai, Rotational excitation of polar molecules by electrons, Phys. Rev. 176, 180–186 (1968).Google Scholar
  146. 146.
    C.W. Clark, Electron scattering from diatomic polar molecules. II. Treatment by frame transformations, Phys. Rev. A 20, 1875–1889 (1979).Google Scholar
  147. 147.
    O.H. Crawford, Bound states of a charged particle in a dipole field, Proc. Phys. Soc. 91, 279–284 (1967).Google Scholar
  148. 148.
    W.R. Garrett, Scattering by a dipolar system: Divergence of cross sections at the critical moment for a point dipole rotor, Phys. Rev. A 23, 1737–1744 (1981).Google Scholar
  149. 149.
    W.R. Garrett, Critical binding of electron-dipole rotor systems; electronically excited states, J. Chem. Phys. 73, 5721–5725 (1980).Google Scholar
  150. 150.
    T.F. O’Malley, Effect of long-range final-state forces on the negative-ion photode-tachment cross section near threshold, Phys. Rev. 137, A1668–A1672 (1965).Google Scholar
  151. 151.
    I.I. Fabrikant, Scattering of slow electrons by polar molecules, Sov. Phys. JETP 44, 77–82 (1976) [Transl, of: Zh. Eksp. Teor. Fiz. 71, 148-158 (1976)].Google Scholar
  152. 152.
    I.I. Fabrikant, Threshold behavior of the cross sections for scattering of electrons by polar molecules, Sov. Phys. JETP 46, 693–697 (1977) [Transi, of: Zh. Eksp. Teor. Fiz. 73, 1317-1324 (1977)].Google Scholar
  153. 153.
    P.C. Engelking, Strong electron-dipole coupling in photodetachment of molecular negative ions: Anomalous rotational thresholds, Phys. Rev. A 26, 740–745 (1982).Google Scholar
  154. 154.
    J.N. Bardsley and R.K. Nesbet, Threshold behavior of inelastic-scattering cross sections, Phys. Rev. A 8, 203–206 (1973).Google Scholar
  155. 155.
    E.P. Wigner, On the behavior of cross sections near thresholds, Phys. Rev. 73, 1002–1009 (1948).Google Scholar
  156. 156.
    E.S. Chang, Study of e-H2 scattering near the rotational threshold, Phys. Rev. A 2, 1403–1406 (1970).Google Scholar
  157. 157.
    A. Dalgarno and R.J. Moffett, The rotational excitation of molecular nitrogen by slow electrons, Proc. Nat. Acad. Sci. India A33, 511–521 (1963).Google Scholar
  158. 158.
    M.A. Morrison and L.A. Collins, Exchange in low-energy electron-molecule scattering: Free-electron-gas model exchange potentials and applications to e-H2 and e-N2 collisions, Phys. Rev. A 17, 918–938 (1978).Google Scholar
  159. 159.
    Yu. F. Smirnov and K.V. Shitikova, The method of K harmonics and the shell model, Sov. J. Part. Nucl. 8, 344–370 (1977).Google Scholar
  160. 160.
    U. Fano, Correlations of two excited electrons, Rep. Prog. Phys. 46, 97–165 (1983).Google Scholar
  161. 161.
    J. Callaway, The variational method in atomic scattering, Phys. Rep. 45, 89–173 (1978).Google Scholar
  162. 162.
    R.K. Nesbet, Variational Methods in Electron-Atom Scattering Theory, Plenum Press, New York (1980).Google Scholar
  163. 163.
    P.G. Burke, K.A. Berrington, and C.V. Sukumar, Electron-atom scattering at intermediate energies, J. Phys. B 14, 289–305 (1981).Google Scholar
  164. 164.
    A.E. Kingston and H.R.J. Walters, Electron-atom scattering at intermediate energies, Comments At. Mol. Phys. 11, 177–191 (1982).Google Scholar
  165. 165.
    P.G. Burke and A.J. Taylor, Correlation in the elastic and inelastic S-wave scattering of electrons by H and He+, Proc. Phys. Soc. 88, 549–562 (1966).Google Scholar
  166. 166.
    P.G. Burke and J.F.B. Mitchell, Electron scattering by atomic hydrogen using a pseudo-state expansion IV. The convergence of the S-state expansion at intermediate energies, J. Phys. B 6, 320–328 (1973).Google Scholar
  167. 167.
    W.C. Fon, K.A. Berrington, P.G. Burke, and A.E. Kingston, Elastic scattering of electrons by atomic hydrogen at intermediate energies, J. Phys. B 14, 1041–1051 (1981).Google Scholar
  168. 168.
    P.G. Burke and N. Chandra, Electron-molecule interactions III. A pseudo-potential method for e --N2 scattering, J. Phys. B 5, 1696–1711 (1972).Google Scholar
  169. 169.
    L.A. Collins, W.D. Robb, and D.W. Norcross, Low-energy collisions of electrons with highly polar molecules: Orthogonalization and model exchange potentials, Phys. Rev. A 20, 1838–1840 (1979).Google Scholar
  170. 170.
    M. Le Dourneuf, Vo Ky Lan, and J.M. Launay, Accurate representation of molecular electrons by a few potential-adapted partial waves, J. Phys. B 15, L685–L690 (1982).Google Scholar
  171. 171.
    D.E. Golden, Low-energy resonances in es-N2 total scattering cross sections: The temporary formation of N- 2, Phys. Rev. Lett. 17, 847–848 (1966).Google Scholar
  172. 172.
    B.D. Buckley and P.G. Burke, The scattering of low-energy electrons by diatomic molecules, J. Phys. B 10, 725–739 (1977).Google Scholar
  173. 173.
    N. Chandra and A. Temkin, Hybrid theory calculation of simultaneous vibration-rotation excitation in e-N2 scattering, Phys. Rev. A 14, 507–511 (1976).Google Scholar
  174. 174.
    F.A. Gianturco and D.G. Thompson, Theoretical evidence for short-lived resonances in electron scattering by HC1 and HF molecules, J. Phys. B 10, L21–L26 (1977).Google Scholar
  175. 175.
    L.A. Collins, R.J.W. Henry, and D.W. Norcross, Electron collisions with polar molecules: Exchange and polarisation in elastic scattering by HC1, J. Phys. B 13, 2299–2307 (1980).Google Scholar
  176. 176.
    N.T. Padial, D.W. Norcross, and L.A. Collins, Vibrationally elastic scattering of electrons by HCl, Phys. Rev. A 27, 141–148 (1983).Google Scholar
  177. 177.
    K. Rohr and F. Linder, Vibrational excitation of polar molecules by electron impact I. Threshold resonances in HF and HCl, J. Phys. B 9, 2521–2537 (1976), and private communications to the authors of Ref. 177 (see Ref. 177).Google Scholar
  178. 178.
    N.A. Mullaney and D.G. Truhlar, Rotationally and orbitally adiabatic basis sets for electron-molecule scattering, Chem. Phys. Lett. 58, 512–517 (1978).Google Scholar
  179. 179.
    N.A. Mullaney and D.G. Truhlar, The use of rotationally and orbitally adiabatic basis functions to calculate rotational excitation cross sections for atom-molecule collisions, Chem. Phys. 39, 91–104 (1979).Google Scholar
  180. 180.
    K. Takayanagi, Low energy ion molecule collisions, in: Physics of Electronic and Atomic Collisions, Invited Papers of the XIIth Intern. Conf. Phys. Electron. Atom. Coll., Gatlinburg, Tennessee, July 1981 (S. Datz, ed.), pp. 343–354, North-Holland, Amsterdam (1982).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Isao Shimamura
    • 1
  1. 1.RIKENThe Institute of Physical and Chemical ResearchWako-shi, SaitamaJapan

Personalised recommendations