Skip to main content

Membrane-Bound Enzymes in Plant Sterol Biosynthesis

  • Chapter
The Enzymes of Biological Membranes

Abstract

The basic pattern of sterol biosynthesis in plants is similar to that involved in cholesterol biosynthesis in mammals, but there are important differences of detail. There are also additional reactions in plants such as alkylation at C-24, glucosylation at C-3, and side-chain desaturation, most frequently at C-2. Sterol biosynthesis in mammals has been studied at the enzyme level to a much greater extent than has phytosterol biosynthesis. Part of the reason is that plant enzymes, particularly those in higher plants, are notoriously difficult to deal with (Loomis, 1973). However, reliable information is accumulating, and in presenting the evidence for the involvement of membrane-bound enzymes in sterol biosynthesis in plants one realizes that the foundations for future developments, not only in enzymology but in studies on the control of synthesis, are now reasonably well established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baisted, D. J., 1978, Steryl glucoside and acyl glucoside biosynthesis in maturing pea seeds, Phytochemistry 17:435–438.

    CAS  Google Scholar 

  • Bartlett, K., Keat, M. J., and Mercer, E. I., 1974, Biosynthesis of sterol esters in Phycomyces blakesleeanus, Phytochemistry 13:1107–1113.

    CAS  Google Scholar 

  • Barton, D. H. R., Gosden, A. F., Mellows, G., and Widdowson, D. A., 1969, Biosynthesis of fern-9-one in Polypodium vulgareLinn., Chem. Commun. 184–186.

    Google Scholar 

  • Barton, D. H. R., Mellows, G., and Widdowson, D. A., 1971, Biosynthesis of terpenes and steroids III. Squalene cyclization in the biosynthesis of triterpenoids; the biosynthesis of fern-9-one inPolypodium vulgare Linn., J. Chem. Soc. C:110–116.

    Google Scholar 

  • Beastall, G. H., Rees, H. H., and Goodwin, T. W., 1971, Properties of a 2,3-oxidosqualene-cycloartenol cyclase fromOchromonas malhamensis, FEBS Lett. 18:175–178.

    PubMed  CAS  Google Scholar 

  • Beastall, G. H., Rees, H. H., and Goodwin, T. W., 1971, Properties of a 2,3-oxidosqualene-cycloartenol cyclase from Ochromonas malhamensis, FEBS Lett. 18:175–178.

    CAS  Google Scholar 

  • Beastall, G. H., Rees, H. H., and Goodwin, T. W., 1972, The conversion of presqualene pyrophosphate into squalene by a cell-free preparation of Pisum sativum, FEBS Lett. 28:243–256.

    CAS  Google Scholar 

  • Bensch, W. R., and Rodwell, V. W., 1970, Purification and properties of 3-hydroxy-3-methylglutaryl coenzyme A reductase from Pseudomonas, J. Biol. Chem. 245:3755–3762.

    CAS  Google Scholar 

  • Benveniste, P., and Massy-Westropp, R. A., 1967, Mise en evidence de l’epoxyde-2,3 de squalene dans les tissus de tabac, Tetrahedron Lett. 37:3553–3556.

    Google Scholar 

  • Berndt, J., Boll, M., Lowel, M., and Gaument, R., 1973, Regulation of sterol biosynthesis in yeast:Induction of 3-hydroxy-3-methylglutaryl-CoA reductase by glucose, Biochem. Biophys. Res. Commun. 51:843–848.

    PubMed  CAS  Google Scholar 

  • Boll, M., Lowel, M., Still, J., and Berndt, J., 1975, Sterol biosynthesis in yeast 3-hydroxy-3-methylglutaryl- coenzyme A reductase as a regulatory enzyme, Eur. J. Biochem. 54:435–444.

    PubMed  CAS  Google Scholar 

  • Bowles, D. J., Lehle, L., and Kauss, H., 1977, Glucosylation of sterols and polyprenol phosphate in the Golgi apparatus of Phaseolus aureus, Planta 134:177–181.

    CAS  Google Scholar 

  • Brooker, J. D., and Russell, D. W., 1975a, Properties of microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase from Pisum sativum seedlings Arch. Biochem. Biophys. 167:732–739.

    Google Scholar 

  • Brooker, J. D., and Russell, D. W., 1975b, Subcellular localization of 3-hydroxy-3-methylglutaryl coenzyme A reductase in Pisum sativum seedlings, Arch. Biochem. Biophys. 167:730–737.

    PubMed  CAS  Google Scholar 

  • Brooker, J. D., and Russell, D. W., 1979, Regulation of microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase from pea seedlings; rapid post-translational phytochrome-mediated decrease in activity and in vivo regulation by isoprenoid products, Arch. Biochem. Biophys. 198:232–334.

    Google Scholar 

  • Bush, P. B., and Grunwald, C., 1972, Sterol changes during germination of Nicotiana tabacum, Plant Physiol. 50:69–72.

    CAS  Google Scholar 

  • Bush, P. B., and Grunwald, C., 1974, Steryl glycoside formation in seedlings of Nicotiana tabacum L., Plant Physiol. 53:131–135.

    PubMed  CAS  Google Scholar 

  • Capstack, E., Rosin, N., Blondin, G. A., and Nes, W. R., 1965, Squalene in Pisum sativum, its cyclization to β-amyrin and labelling pattern, J. Biol. Chem. 240:3258.

    CAS  Google Scholar 

  • Caspi, E., and Mulheirn, L. J., 1971, Mechanism of squalene cyclization. The biosynthesis of fusidic acid, J. Biol. Chem. 246:2494–2501.

    PubMed  Google Scholar 

  • Caspi, E., and Sliwowski, J., 1975, On the role of cycloartenol in the formation of phytosterols. Biosynthesis of [192H] sitosterol in deuterium oxide germinated peas, J. Am. Chem. Soc. 97:5032–5034.

    PubMed  CAS  Google Scholar 

  • Cattel, L., Anding, C., and Benveniste, P., 1976, Cyclisation of l-trans-1’-norsqualene-2,3-epoxide and l-cis-l’-norsqualene-2-3-epoxide by a cell-free system of corn embryos, Phytochemistry 15:931–938.

    CAS  Google Scholar 

  • Corey, E. J., and Ortiz De Montellano, P. R., 1967, Enzymic synthesis of β-amyrin from 2,3-oxidosqualene, J. Am. Chem. Soc. 89:3362–3363.

    PubMed  CAS  Google Scholar 

  • Cornforth, J. W., 1973, The logic of working with enzymes, Chem. Soc. Rev. 2:1–20.

    CAS  Google Scholar 

  • Dempsey, M. E., 1974, Regulation of steroid biosynthesis, Annu. Rev. Biochem. 43:967–990.

    PubMed  CAS  Google Scholar 

  • Douglas, T. J., and Paleg, L. G., 1974, Plant growth retardants as inhibitors of sterol biosynthesis in tobacco seedlings, Plant Physiol. 54:238–245.

    PubMed  CAS  Google Scholar 

  • Eichenberger, W., and Newman, D. W., 1968, Hexose transfer from UDP hexose in formation of sterol glycosides and esterified sterol glycosides in leaves, Biochem. Biophys. Res. Commun. 32:336–374.

    Google Scholar 

  • Eichenberger, W., and Siegrist, H. P., 1975, Steryl glycoside acyl transferase from carrots, FEBS Lett. 52:153–156.

    PubMed  CAS  Google Scholar 

  • Epstein, W. W., and Rilling, H. C., 1970, Studies on the mechanism of squalene biosynthesis, the structure of presqualene pyrophosphate, J. Biol. Chem. 245:4597–4605.

    PubMed  CAS  Google Scholar 

  • Fonteneau, P., Hartmann-Bouillon, M. A., and Benveniste, P., 1977, A 24-methylene lophenol C-28 methyl transferase from suspension cultures of bramble cells, Plant Sci. Lett. 10:147–155.

    CAS  Google Scholar 

  • Forsee, W. T., Laime, R. A., and Elbein, A. D., 1974, Solubilization of a particulate UDP-sucrose:sterol β-glucosyl transferase in developing cotton fibres and seeds and characterization of steryl β-acyl-D- glucosides, Arch. Biochem. Biophys. 161:248–259.

    CAS  Google Scholar 

  • Forsee, W. T., Valkovich, G., and Elbein, A. D., 1976, Acylation of steryl glucosides by phospholipids, Arch. Biochem. Biophys. 172:410–418.

    PubMed  CAS  Google Scholar 

  • Ghisalberti, E. L., De Souza, N. J., Rees, H. H., and Goodwin, T. W., 1970, Biosynthesis of the triterpene hydrocarbons of Polypodium vulgare, Phytochemistry 9:1817–1823.

    CAS  Google Scholar 

  • Goad, L. J., and Goodwin, T. W., 1972, The biosynthesis of plant sterols, Prog. Phytochem. 3:113–298.

    CAS  Google Scholar 

  • Goad, L. J., Lenton, J. R., Knapp, F. F., and Goodwin, T. W., 1974, Phytosterol side chain biosynthesis, Lipids 9:582–595.

    PubMed  CAS  Google Scholar 

  • Goodwin, T. W., 1979, Biosynthesis of terpenoids, Annu. Rev. Plant Physiol. 30:369–404.

    CAS  Google Scholar 

  • Goodwin, T. W., 1980, Biosynthesis of sterols, in:The Biochemistry of Plants, Vol. 4 (P. K. Stumpf, ed.), Academic Press, New York.

    Google Scholar 

  • Goodwin, T. W., 1981, Biosynthesis of plant sterols and other plant terpenoids, in:Biosynthesis of Isoprenoid Compounds, Vol. 1 (J. W. Porter and S. L. Spurgeon, eds.), Wiley, New York.

    Google Scholar 

  • Goodwin, T. W., 1982, Aspects of sterol biosynthesis in plants, Roussel Prize Lecture.

    Google Scholar 

  • Goodwin, T. W., and Mercer, E. I., 1983, An Introduction to Plant Biochemistry, 2nd Ed., Pergamon Press, London.

    Google Scholar 

  • Gotfredson, W. O., Loreh, H., Van Tamelen, E. E., Willet, J. D., and Clayton, R. B., 1968, Biosynthesis of fusidic acid from squalene 2,3-oxide, J. Am. Chem. Soc. 90:208–209.

    Google Scholar 

  • Hartmann, M. A., Feme, M., Gigot, C., Brandt, R., and Benveniste, P., 1973, Isolement, caracterisation et composition en sterols de fractions subcellulaires de feuilles etoilées de Haricot, Physiol. Veg. 11:209–230.

    CAS  Google Scholar 

  • Hartmann, M. A., Fonteneau, P., and Benveniste, P., 1977, Subcellular localization of sterol synthesizing enzymes in maize coleoptiles, Plant Sci. Lett. 10:147.

    Google Scholar 

  • Heintz, R., 1973, Utilisation de fractions subcellulaires pour l’étude de la biosynthese des sterols de végetaux supèrieurs, Thesis, University of Strasbourg, France.

    Google Scholar 

  • Heintz, R., and Benveniste, P., 1970, Cyclization de l’epoxide-2,3 de squalene par des microsomes extraits de tisus de tabac cultivés in vitro, Phytochemistry 9:1499–1503.

    CAS  Google Scholar 

  • Heintz, R., and Benveniste, P., 1974, Plant sterol metabolism. Enzymatic cleavage of the 9β 19β cyclopropane ring of cyclopropylsterols in bramble tissue cultures, J. Biol. Chem. 249:4267–4274.

    PubMed  CAS  Google Scholar 

  • Heintz, R., Schaeffer, P. C., and Benveniste, P., 1970, Cyclization of squalene 2,3,22,23-diepoxide by microsomes from bramble Rubus fruticosatissues grown, in vitro, Chem. Commun. 946–947.

    Google Scholar 

  • Heintz, R., Benveniste, P., and Bimpson, T., 1972a, Plant sterol metabolism. Evidence for the presence of an enzyme capable of opening the cyclopropane ring of cycloeucalenol, Biochem. Biophys. Res. Commun. 46:766–772.

    PubMed  CAS  Google Scholar 

  • Heintz, R., Bimpson, T., and Benveniste, P., 1972b, Plant sterol metabolism. Studies on the substrate specificity of an enzyme capable of opening the cyclopropane ring of cycloeucalenol, Biochem. Biophys. Res. Commun. 49:820–826.

    PubMed  CAS  Google Scholar 

  • Heinze, E., Dieler, H. P., and Rullkötter, J., 1975, Enzymatic acylation of steryl glycoside, J. Plant Physiol. 75:78–87.

    Google Scholar 

  • Hepper, C. M., and Audley, B. G., 1969, The biosynthesis of rubber from β-hydroxy-β-methylglutaryl coenzyme A in Hevea brasiliensis latex, Biochem. J. 114:379–386.

    PubMed  CAS  Google Scholar 

  • Horan, H., McCormick, J. P., and Arigoni, D., 1973, Enzyme-catalyzed formation of β-amyrin from a bicyclic isomer of 2,3-epoxy-squalene, J. Chem. Soc. D:73–74.

    Google Scholar 

  • Hou, C. T., Umemura, Y., Nakamura, M., and Funahashi, S., 1968, Enzymic synthesis of steryl glucosides by a particulate preparation from immature soyabean seeds, J. Biochem. 63:351–360.

    PubMed  CAS  Google Scholar 

  • Kalinowska, M., and Wojciechowski, A., 1983, The occurrence of sterol ester hydrolase activity in roots of white mustard seedlings, Phytochemistry 22:59–63.

    CAS  Google Scholar 

  • Karst, F., and Lacroute, F., 1977, Ergosterol biosynthesis in Saccharomyces cerevisiae, mutants deficient in the early sites of the pathway, Mol. Gen. Genet. 154:269–277.

    PubMed  CAS  Google Scholar 

  • Kauss, H., 1968, Enzymatische glucosylierung von pflanzlichen sterinen, Z. Naturforsch. 23b:1522–1526.

    CAS  Google Scholar 

  • Kawaguchi, A., Kobayashi, H., and Okuda, S., 1973a, Cyclization of 2,3-oxidosqualene with microsomal fraction of Cephalosporium caerulens, Chem. Pharm. Bull. 21:577–583.

    CAS  Google Scholar 

  • Kawaguchi, A., Nozoe, S., and Okuda, S., 1973b, Subcellular distribution of sesterterpene- and sterol- biosynthesis activities in Cochliobolus heterostrophus, Biochim. Biophys. Acta 196:615–623.

    Google Scholar 

  • Kiribuchi, T., Mizumaga, T., and Funahashi, S., 1966, Separation of soyabean sterols by fluorisil chromatography and characterization of acylated sterol glycosides, Agric. Biol. Chem. 30:770–778.

    CAS  Google Scholar 

  • Kirtley, M. E., and Rudney, H., 1967, Some properties and mechanism of action of the β-hydroxy-β- methylglutaryl coenzyme A reductase of yeast, Biochemistry 6:230–238.

    PubMed  CAS  Google Scholar 

  • Laine, R. A., and Elbein, A. D., 1971, Sterol glucosides in Phaseolus aureus., Use of GLC and MS for structural identification, Biochemistry 10:2547–2553.

    PubMed  CAS  Google Scholar 

  • Langeau, C., Goad, L. J., and Goodwin, T. W., 1977, Conversion of a 24-β-ethyl-25-methylene intermediate into poriferasterol by Trebouxia species, Phytochemistry 16:1931–1933.

    Google Scholar 

  • Lavintman, N., and Cardini, C. E., 1970, Biosynthesis of a glycolipid in starch grains from sweetcorn, Biochim. Biophys. Acta. 201:508–510.

    PubMed  CAS  Google Scholar 

  • Lavintman, N., Tandecarz, J., and Cardini, C. E., 1977, Enzymatic glycosylation of steroid alkaloids in potato tuber, Plant Sci. Lett. 8:65–70.

    CAS  Google Scholar 

  • Lepage, M., 1964, Isolation and characterization of an esterified form of sterol glucoside, J. Lipid Res. 5:587–592.

    PubMed  Google Scholar 

  • Lercher, M., and Wojciechowski, Z. A., 1976, Localization of plant UDP-glucose:Sterol glycosyltransferase in the Golgi membranes, Plant Sci. Lett. 7:227–340.

    Google Scholar 

  • Liedvogel, B., and Kleinig, H., 1977, Lipid metabolism in chromoplast membranes from the daffodil:Glycosylation and acylation. Planta 133:249–253.

    CAS  Google Scholar 

  • Loomis, W. D., 1973, Overcoming problems of phenolics and quinones in the isolation of plant enzymes and organelles, in:Methods in Enzymology, Vol. 31, Academic Press, New York, pp. 528–544.

    Google Scholar 

  • Mercer, E. I., and Johnson, M. W., 1969, Cyclization of squalene-2,3-oxide to lanosterol in a cell-free system from Phycomyces blakesleeanus, Phytochemistry 8:2329–2331.

    CAS  Google Scholar 

  • Misso, N. L. A., and Goad, L. J., 1983, Cyclolaudenol production by a microsomal preparation from Zea mays, shoots, Phytochemistry, 22:2473–2479.

    CAS  Google Scholar 

  • Moore, J. T., Jr., and Gaylor, J. L., 1969, Isolation and purification of an S-adenosylmethionine:Δ24- sterol methyltransferase from yeast, J. Biol. Chem. 233:6334–6340.

    Google Scholar 

  • Moore, J. T., Jr., and Gaylor, J. L., 1970, Investigation of an S-adenosylmethionine:Δ24-sterol methyltransferase in ergosterol biosynthesis in yeast, J. Biol. Chem. 245:4684–4688.

    PubMed  CAS  Google Scholar 

  • Mudd, J. B., 1980, Sterol interconversions, in:Biochemistry of Plants, Vol. 4 (P. K. Stumpf, ed.), Academic Press, New York.

    Google Scholar 

  • Nes, W. R., and McKean, M. L., 1977, Biochemistry of Steroids and Other Isoprenoids, University Park Press, Baltimore.

    Google Scholar 

  • Ongun, A., and Mudd, J. B., 1970, The biosynthesis of steryl glucosides in plants, Plant Physiol. 45:255–262.

    PubMed  CAS  Google Scholar 

  • Peaud-Lenoël, C., and Axelos, M., 1972, D-Glucosylation des phytosterols et acylation des steryl-D glucosides en presence d’enzymes de plantes, Carbohydr. Res. 24:247–262.

    PubMed  Google Scholar 

  • Ponsinet, G., and Ourisson, G., 1967, Biosynthèse in vitro des triterpenes dans le latex d’Euphorbia, Phytochemistry 6:1235–1243.

    CAS  Google Scholar 

  • Popják, G., and Agnew, W. S., 1979, Squalene synthetase, Mol. Cell. Biochem. 27:97–116.

    PubMed  Google Scholar 

  • Popják, G., Edmond, J., and Wong, S. W., 1973, Absolute configuration of presqualene alcohol, J. Am. Chem. Soc. 95:2713–2714.

    Google Scholar 

  • Porter, J. W., and Spurgeon, S. L. (eds.), 1981, Biosynthesis of Isoprenoid Compounds, Vol. 1, Wiley- Interscience, New York.

    Google Scholar 

  • Poulter, C. D., and Rilling, H. C., 1981, in:Biosynthesis of Isoprenoid Compounds, Vol. 1 (J. W. Porter and S. L. Spurgeon, eds.) Wiley, New York, pp. 161–224.

    Google Scholar 

  • Qureshi, A. A., Beytia, E. D., and Porter, J. W., 1972, Squalene synthetase I. Dissociation and reassociation of enzyme complex, Biochem. Biophys. Res. Commun., 48:1123.

    PubMed  CAS  Google Scholar 

  • Qureshi, A. A., Beytia, E., and Porter, J. W., 1973, Squalene synthase II. Purification and properties of bakers’ yeast enzyme, J. Biol. Chem. 248:1848–1853.

    PubMed  CAS  Google Scholar 

  • Qureshi, N., Dugan, R. E., Nimmannit, S., Wu, W. H., and Porter, J. W., 1976a, Purification of β-hydroxy-β-methylglutaryl coenzyme A reductase from yeast, Biochemistry 15:4185–4190.

    PubMed  CAS  Google Scholar 

  • Qureshi, N., Dugan, R. E., Cleland, W. W., and Porter, J. W., 1976b, Kinetic analysis of the individual reductive steps catalysed by β-hydroxy-β-methylglutaryl coenzyme A reductase obtained from yeast, Biochemistry 15:4191–4197.

    PubMed  CAS  Google Scholar 

  • Rahier, A., Schmitt, P., and Benveniste, P., 1982, 7-oxo-24(28)-dehydrocycloeucalenol, a potent inhibitor of plant sterol biosynthesis, Phytochemistry 21:1969–1974.

    CAS  Google Scholar 

  • Rees, H. H., and Goodwin, T. W., 1975, Biosynthesis of triterpenes, steroids and carotenoids, in:Biosynthesis, Vol. 3 (Specialist Periodical Reports) (T. A. Geissman, ed.), The Chemical Society, London, pp. 14–88.

    Google Scholar 

  • Rees, H. H., Britton, G., and Goodwin, T. W., 1968a, The biosynthesis of β-amyrin:Mechanism of squalene cyclization, Biochem. J. 106:659–665.

    PubMed  CAS  Google Scholar 

  • Rees, H. H., Goad, L. J., and Goodwin, T. W., 1968b, Cyclization of 2,3-oxidosqualene to cycloartenol in a cell-free system from higher plants, Tetrahedron Lett. 6:723–725.

    PubMed  CAS  Google Scholar 

  • Rees, H. H., Goad, L. J., and Goodwin, T. W., 1969, 2,3-oxidosqualene cycloartenol cyclase from Ochromonas malhamensis. Biochim. Biophys. Acta 176:892–894.

    PubMed  CAS  Google Scholar 

  • Reid, W. W., 1968, Accumulation of squalene 2,3-oxide during inhibition of phytosterol biosynthesis in Nicotiana tabacum, Phytochemistry 7:451–452.

    CAS  Google Scholar 

  • Rilling, H. C., 1966, A new intermediate in the biosynthesis of squalene, J. Biol. Chem. 241:3233–3236.

    PubMed  CAS  Google Scholar 

  • Rilling, H. C., and Epstein, W. W., 1969, Studies in the mechanism of squalene biosynthesis. Presqualene, a phosphorylated precursor to squalene, J. Am. Chem. Soc. 91:1041–1042.

    CAS  Google Scholar 

  • Rohmer, M., Anding, C., and Ourisson, G., 1980, Non-specific biosynthesis of hopane triterpenes by a cell-free system from Acetobacter pasteurianum, Eur. J. Biochem. 112:541–547.

    CAS  Google Scholar 

  • Rowan, M. G., and Dean, P. D. G., 1972, Properties of squalene-2(3),22(23)-diepoxide-α-onocerin cyclase from Ononis spinosa root, Phytochemistry 11:2111–2118.

    Google Scholar 

  • Rowan, M. G., Dean, P. D. G., and Goodwin, T. W., 1971, The enzymic conversion of squalene 2,(3),22- (23)-diepoxide to α-onocerin by a cell-free extract of Ononis spinosa, FEBS Lett. 12:229–232.

    CAS  Google Scholar 

  • Rubinstein, I., and Goad, L. J., 1974, Occurrence of (24S)-24-methylcholesta-5,22E-dier-3 β-ol in the diatom Phaeodactylum triconutum, Phytochemistry 13:455–487.

    Google Scholar 

  • Ruzicka, L., 1959, History of the isoprene rule, Proc. Chem. Soc. 341–360.

    Google Scholar 

  • Scheid, G., Rohmer, M., and Benveniste, P., 1982, Biosynthesis of Δ5,23 sterols in etiolated coleoptiles from Zea mays, Phytochemistry 21:1959–1968.

    CAS  Google Scholar 

  • Shechter, I., Sweet, F. W., and Bloch, K., 1970, Comparative properties of 2,3-oxidosqualene-lanosterol cyclase from yeast and liver, Biochim. Biophys. Acta 220:463–468.

    PubMed  CAS  Google Scholar 

  • Shimizu, I., Nagai, J., Hatanoka, H., and Katsuki, H., 1973, Mevalonate synthesis in the mitochondria of yeast, Biochim. Biophys. Acta 296:310–320.

    PubMed  CAS  Google Scholar 

  • Sipat, A. B., 1982, Hydroxymethylglutaryl CoA reductase (NADPH) in the latex of Hevea brasiliensis, Phytochemistry 21:2613–2618.

    CAS  Google Scholar 

  • Wilkomirski, B., and Goad, L. J., 1983, The conversion of (24S)-24-ethylcholesta-5,22,25-trien-3β-ol into poriferasterol both in vivo and with a cell-free homogenate of the alga Trebouxia sp, Phytochemistry 22:929–932.

    CAS  Google Scholar 

  • Wojciechowski, Z. A., 1972, Biosynthesis of sterol glycosides in cell-free preparations from Calendula officinalis, Acta Biochem. Pol. 19:43–49.

    CAS  Google Scholar 

  • Wojciechowski, Z. A., 1974, Changes in UDPG-sterol glycosyl transferase activity in Calendula officinalis, Phytochemistry 13:2091–2094.

    CAS  Google Scholar 

  • Wojciechowski, Z. A., 1983, The biosynthesis of plant steryl glycosides and saponins, Biochem. Soc. Trans. 11:565–568.

    CAS  Google Scholar 

  • Wojciechowski, Z. A., Goad, L. J., and Goodwin, T. W., 1973, S-Adenosyl-L-methionine-cycloartenol methyltransferase activity in cell-free systems from Trebouxia sp. and Scenedesmus obliquus, Biochem. J. 136:405–412.

    CAS  Google Scholar 

  • Wong, R. J., McCormack, D. K., and Russell, D. W., 1982, Plastid 3-hydroxy-3-methylglutaryl coenzyme A reductase; distinctive kinetic and regulatory features, Arch. Biochem. Biophys. 261:631–638.

    Google Scholar 

  • Yamamoto, S., and Bloch, K., 1970, Enzymic studies on the oxidative cyclization of squalene, Biochem. Soc. Symp. 29:35–43.

    PubMed  CAS  Google Scholar 

  • Zakalj, M., and Goad, L. J., 1983, Observations on the biosynthesis of 24-methylcholesterol and 24- ethylcholesterol by Zea mais, Phytochemistry 22:1931–1936.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Goodwin, T.W. (1985). Membrane-Bound Enzymes in Plant Sterol Biosynthesis. In: Martonosi, A.N. (eds) The Enzymes of Biological Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2355-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2355-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9442-9

  • Online ISBN: 978-1-4613-2355-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics