Skip to main content

Membrane-Bound Enzymes of Cholesterol Biosynthesis:Resolution and Identification of the Components Required for Cholesterol Synthesis from Squalene

  • Chapter
The Enzymes of Biological Membranes

Abstract

All 22 enzymic steps in the synthesis of cholesterol (Figure 1) from squalene are catalyzed by membrane-bound enzymes of the endoplasmic reticulum which is isolated as the microsomal fraction of cell-free tissue preparations. In addition, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase), the rate-limiting enzyme for the overall cholesterol biosynthetic pathway, is also membrane-bound and found associated with microsomes. These observations are significant since they suggest that the membrane may play important roles in both the catalysis and regulation of synthesis of cellular sterols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnew, W. S., and Popjak, G., 1978, Squalene synthetase. Stoichiometry and kinetics of presqualene pyrophosphate and squalene synthesis by yeast microsomes, J. Biol. Chem. 253:4566–4573.

    PubMed  CAS  Google Scholar 

  • Akhtar, M., and Parvez, M. A., 1968, The mechanism of the elaboration of ring b in ergosterol biosynthesis, Biochem. J. 108:527–531.

    PubMed  CAS  Google Scholar 

  • Akhtar, M., Alexander, K., Boar, R. B., McGhie, J. F., and Barton, D. H. R., 1978, Chemical and enzymic studies on the characterization of intermediates during the removal of the 14α-methyl group in cholesterol biosynthesis. The use of 32-functionalized lanosterol derivatives, Biochem. J. 169:449–463.

    PubMed  CAS  Google Scholar 

  • Alexander, K., Akhtar, M., Boar, R. B., McGhie, J. F., and Barton, D. H. R., 1972, The removal of the 32-carbon atom as formic acid in cholesterol biosynthesis, J. Chem. Soc. Chem. Commun. 7:383–385.

    Google Scholar 

  • Alexander, K. T. W., Mitropoulos, K. A., and Gibbons, G. F., 1974, A possible role for cytochrome P-450 during the biosynthesis of zymosterol from lanosterol by Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun. 60:460–467.

    PubMed  CAS  Google Scholar 

  • Aoyama, Y., and Yoshida, Y., 1978, The 14α-demethylation of lanosterol by a reconstituted cytochrome P-450 system from yeast microsomes, Biochem. Biophys. Res. Commun. 85:28–34.

    PubMed  CAS  Google Scholar 

  • Aoyama, Y., Yoshida, Y., Sato, R., Susani, M., and Ruis, H., 1981, Involvement of cytochrome b5 and a cyanide-sensitive monooxygenase in the 4-demethylation of 4,4-dimethylzymosterol by yeast microsomes, Biochim. Biophys. Acta 663:194–202.

    PubMed  CAS  Google Scholar 

  • Atkin, S. D., Palmer, E. D., English, P. D., Morgan, B., Cawthorne, M. A., and Green, J., 1972, Role of cytochrome P-450 in cholesterol biogenesis and catabolism, Biochem. J. 128:237–242.

    PubMed  CAS  Google Scholar 

  • Billheimer, J. T., and Gaylor, J. L., 1980, Cytosolic modulators of activities of microsomal enzymes of cholesterol biosynthesis. Role of a cytosolic protein with properties similar to Z-protein (fatty acid- binding protein), J. Biol. Chem. 255:8128–8135.

    PubMed  CAS  Google Scholar 

  • Billheimer, J. T., Alcorn, M., and Gaylor, J. L., 1981, Solubilization and partial purification of a microsomal 3-ketosteroid reductase of cholesterol biosynthesis, Arch. Biochem. Biophys. 211:430–438.

    PubMed  CAS  Google Scholar 

  • Bjorkhem, I., and Holmberg, I., 1973, Mechanism of enzymatic reduction of steroid double bonds, Eur. J. Biochem. 33:364–367.

    PubMed  CAS  Google Scholar 

  • Caras, I. W., and Bloch, K., 1979, Effects of a supernatant protein activator on microsomal squalene-2,3-oxide-lanosterol cyclase, J. Biol. Chem. 254:11816–11821.

    PubMed  CAS  Google Scholar 

  • Caras, I. W., Friedlander, E. J., and Bloch, K., 1980, Interactions of supernatant protein factor with components of the microsomal squalene epoxidase system, J. Biol. Chem. 255:3575–3580.

    PubMed  CAS  Google Scholar 

  • Caspi, E., and Ramm, P. J., 1969, Stereochemical differences in the biosynthesis of C27-Δ7-steroidal intermediates, Tetrahedron Lett. 3:181–185.

    Google Scholar 

  • Chanderbhan, R., Noland, B. J., Scallen T. L., and Vahouny, G. V., 1982, Sterol carrier protein2. Delivery of cholesterol from adrenal lipid droplets to mitochondria for pregnenolone synthesis, J. Biol. Chem. 257:8928–8934.

    PubMed  CAS  Google Scholar 

  • Chang, T.-Y., and Limanek, J. S., 1980, Regulation of cytosolic acetoacetyl coenzyme A thiolase, 3-hydroxy-3-methylglutaryl coenzyme A reductase, and mevalonate kinase by low density lipoprotein and by 25-hydroxycholesterol in Chinese hamster ovary cells, J. Biol. Chem. 255:7787–7795.

    PubMed  CAS  Google Scholar 

  • Corey, E. J., Russey, W. E., and Ortiz de Montellano, P. R., 1966, 2,3-Oxidosqualene, an intermediate in the biological synthesis of sterols from squalene, J. Am. Chem. Soc. 88:4750–4751.

    CAS  Google Scholar 

  • Dean, P. D. G., Ortiz de Montellano, P. R., Bloch, K., and Corey, E. J., 1966, A soluble 2,3-oxidosqualene sterol cyclase, J. Biol. Chem. 242:3014–3015.

    Google Scholar 

  • Dempsey, M. E., 1965, Pathways of enzymic synthesis and conversion to cholesterol of Δ5,7,24-cholestatrien-3β-ol and other naturally occurring sterols, J. Biol. Chem. 240:4176–4188.

    PubMed  CAS  Google Scholar 

  • Dempsey, M. E., 1969, Δ7-Sterol Δ5-dehydrogenase and Δ5,7-sterol Δ7-reductase of rat liver, Meth. Enzymol. 15:501–514.

    CAS  Google Scholar 

  • Dempsey, M. E., Seaton, J. D., Schroepfer, G. J., and Trockman, R. W., 1964, Intermediary role of 5,7-cholestadien-3β-ol in cholesterol biosynthesis, J. Biol. Chem. 239:1381–1387.

    PubMed  CAS  Google Scholar 

  • Dempsey, M. E., Bissett, K. J., and Ritter, M. C., 1968, Enzymic formation of the Δ5-bond of cholesterol, Circulation 38 (Suppl.):VI - 5.

    Google Scholar 

  • Dempsey, M. E., McCoy, K. E., Baker, H. N., Damitriadou-Vafiadou, A., Lorsbach, T., and Howard, J. B., 1981, Large-scale purification and structural characterization of squalene and sterol carrier protein, J. Biol. Chem. 256:1867–1873.

    PubMed  CAS  Google Scholar 

  • Dugan, R. E., and Porter, J. W., 1972, Hog liver squalene synthetase:The partial purification of the particulate enzyme and kinetic analysis of the reaction, Arch. Biochem. Biophys. 152:28–35.

    PubMed  CAS  Google Scholar 

  • Ferguson, J. B., and Bloch, K., 1977, Purification and properties of a soluble protein activator of rat liver squalene epoxidase, J. Biol. Chem. 252:5381–5385.

    PubMed  CAS  Google Scholar 

  • Fryberg, M., Oehlschlager, A. C., and Unrau, A. M., 1973, Formation of a 5α-hydroxy sterol by Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun. 51:219–222.

    PubMed  CAS  Google Scholar 

  • Fukushima, H., Grinstead, G. F., and Gaylor, J. L., 1981, Total enzymic synthesis of cholesterol from lanosterol. Cytochrome b5-dependence of 4-methyl sterol oxidase, J. Biol. Chem. 256:4822–4826.

    PubMed  CAS  Google Scholar 

  • Garvey, K. L., and Scallen, T. J., 1978, Studies on the conversion of enzymatically generated, microsomal-bound squalene to sterol, J. Biol. Chem. 253:5476–5483.

    Google Scholar 

  • Gaylor, J. L., 1981, Formation of sterols in animals, in:Biochemistry of Isoprenoids, Vol. 1 ( J. W. Porter and S. L. Springer, eds.), John Wiley & Sons, New York, pp. 482–543.

    Google Scholar 

  • Gaylor, J. L., 1982, Membrane-bound enzymes of cholesterol biosynthesis from lanosterol, in:Membranes and Transport, Vol. 1 ( A. N. Martonosi, ed.), Plenum, New York, pp. 249–253.

    Google Scholar 

  • Gaylor, J. L., and Delwiche, C. V., 1973, Investigation of the multienzymic system of microsomal cholesterol biosynthesis, in:Annals of the New York Academy of Science, Vol. 212 ( D. Y. Cooper and H. A. Salhanick, eds.), Academy Publishing Co., New York, pp. 122–138.

    Google Scholar 

  • Gaylor, J. L., and Delwiche, C. V., 1976, Purification of a soluble rat liver protein that stimulates microsomal 4-methyl sterol oxidase activity, J. Biol. Chem. 251:6638–6645.

    PubMed  CAS  Google Scholar 

  • Gaylor, J. L., and Mason, H. S., 1968, Investigation of the component reactions of sterol demethylation. Evidence against participation of cytochrome P-450, J. Biol. Chem. 243:5546–5555.

    PubMed  Google Scholar 

  • Gaylor, J. L., Delwiche, C. V., and Swindell, A. C., 1966, Enzymatic isomerization (Δ8 → Δ7) of intermediates of sterol biosynthesis, Steroids 8:353–363.

    CAS  Google Scholar 

  • Gaylor, J. L., Hsu, S. T., Delwiche, C. V., Comai, K., and Seifried, H. E., 1973, Noncytochrome P-450-dependent oxidase of liver microsomes. Oxidation of methyl sterols and stearoyl coenzyme A, in:Oxidases and Related Redox Systems ( T. E. King, H. S. Mason, and M. Morrison, eds.), University Park Press, Baltimore, pp. 431–444.

    Google Scholar 

  • Gibbons, G. F., and Mitropoulos, K. A., 1972, Inhibition of cholesterol biosynthesis by carbon monoxide:Accumulation of lanosterol and 24,25 dihydrolanosterol, Biochem. J. 127:315–317.

    PubMed  CAS  Google Scholar 

  • Gibbons, G. F., and Mitropoulos, K. A., 1973, The effect of carbon monoxide on the nature of the accumulated 4,4-dimethyl sterol precursors of cholesterol during biosynthesis from [2-14C]mevalonic acid in vitro, Biochem. J. 132:439–448.

    CAS  Google Scholar 

  • Gibbons, G. F., and Mitropoulos, K. A., 1975, Effect of trans- 1,4-bis (2-chlorobenzylaminomethyl) cyclohexane dihydrochloride and carbon monoxide on hepatic cholesterol biosynthesis from 4,4-dimethyl sterols in vitro, Biochim. Biophys. Acta 380:270–281.

    CAS  Google Scholar 

  • Gibbons, G. F., Goad, L. J., and Goodwin, T. W., 1968a, Stereochemistry of hydrogen elimination from C-15 during cholesterol biosynthesis, Chem. Commun. 22:1458–1460.

    Google Scholar 

  • Gibbons, G. F., Goad, L. J., and Goodwin, T. W., 1968b, The stereochemistry of hydrogen elimination at C-7 during cholesterol biosynthesis in rat liver, Chem. Commun. 20:1212–1214.

    Google Scholar 

  • Gibbons, G. F., Pullinger, C. R., and Mitropoulos, K. A., 1979, Studies on the mechanism of lanosterol 14α-demethylation. A requirement for two distinct types of mixed-function oxidase systems, Biochem. J. 183:309–315.

    PubMed  CAS  Google Scholar 

  • Grinstead, G. F., and Gaylor, J. L., 1982, Total enzymic synthesis of cholesterol from 4,4,14α-trimethyl- 5α-cholesta-8,24-dien-3β-ol:Solubilization, resolution, and reconstitution of Δ7-sterol 5-desaturase, J. Biol. Chem. 257:13937–13944.

    PubMed  CAS  Google Scholar 

  • Grinstead, G., Trzaskos, J. M., Billheimer, J. T., and Gaylor, J. L., 1983, Cytosolic modulators of activities of microsomal enzymes of cholesterol biosynthesis. Effects of acyl-CoA inhibition and cytosolic Z-protein, Biochim. Biophys. Acta, 751:41–51.

    PubMed  CAS  Google Scholar 

  • Havel, C., Hansbury, E., Scallen, T. J., and Watson, J. A., 1979, Regulation of cholesterol synthesis in primary rat hepatocyte culture cells. Possible regulatory site at sterol demethylation, J. Biol. Chem. 254:9573–9582.

    PubMed  CAS  Google Scholar 

  • Kienle, M. G., Varma, R. K., Mulheirn, L. J., Yagen, B., and Caspi, E., 1973, Reduction of Δ24 of lanosterol in the biosynthesis of cholesterol by rat liver enzymes. II. Stereochemistry of addition of the C-25 proton, J. Am. Chem. Soc. 95:1996–2001.

    PubMed  CAS  Google Scholar 

  • King, H. S., Mason, H. S., and Morrison, M. (eds.), 1973, Oxidases and Related Redox Systems, Vol. 2, University Park Press, Baltimore.

    Google Scholar 

  • Kojima, Y., and Sakurada, t., 1982, Regulation of mouse liver squalene epoxidase, XII International Congress of Biochemistry, p. 349.

    Google Scholar 

  • Kojima, Y., Friedlander, E. J., and Bloch, K., 1981, Protein-facilitated intermembrane transfer of squalene. Demonstration by density gradient centrifugation, J. Biol. Chem. 256:7235–7239.

    PubMed  CAS  Google Scholar 

  • Lee, W.-H., Kammereck, R., Lutsky, B. N., McCloskey, J. A., and Schroepfer, G. J., Jr., 1969, Mechanism of the enzymic conversion of cholest-8-en-3β-ol to cholest-7-en-3β-ol, J. Biol. Chem. 244:2033–2040.

    PubMed  CAS  Google Scholar 

  • Lutsky, B. N., Martin, J. A., and Schroepfer, G. J. Jr., 1971, Studies of the metabolism of 5α-cholesta-8,14-dien-3β-ol and 5α-cholesta-7,14-diene-3β-ol in rat liver homogenate preparations, J. Biol. Chem. 246:6437–6744.

    Google Scholar 

  • Lynen, F., Eggerer, H., Henning, U., and Kessel, I., 1958, Biosynthesis of the terpenes. III. Farnesyl pyrophosphate and 3-methyl-3-buten-l-yl pyrophosphate, the biological precursors of squalene, Angew. Chem. 70:738–742.

    CAS  Google Scholar 

  • Maitra, V. S., Mohau, V. P., Kochi, H., Shankar, V., Adlersberg, M., Liu, K.-P., Ponticorvo, L., and Sprinson, D. B., 1982, Purification of a terminal oxygenase in demethylation of C-30 of lanosterol, Biochem. Biophys. Res. Commun. 108:517–525.

    PubMed  CAS  Google Scholar 

  • Miller, W. L., Brady, D. R., and Gaylor, J. L., 1971, Investigation of the component reactions of oxidative demethylation of sterols. Metabolism of 4α-hydroxymethyl steroids, J. Biol. Chem. 246:5147–5153.

    PubMed  CAS  Google Scholar 

  • Nes, W. R., and McKean, M. L., 1977, Biochemistry of Steroids and Other Isopentenoids, 1st Ed., University Park Press, Baltimore, Maryland.

    Google Scholar 

  • Noland, B. J., Arebalo, R. E., Hansbury, E., and Scallen, T. J., 1980, Purification and properties of sterol carrier protein2, J. Biol. Chem. 255:4282–4289.

    PubMed  CAS  Google Scholar 

  • Ono, T., and Bloch, K., 1975, Solubilization and partial purification of rat liver squalene epoxidase, J. Biol. Chem. 250:1571–1579.

    PubMed  CAS  Google Scholar 

  • Ono, T., Ozasa, S., Hasegawa, F., and Imai, Y., 1977, Involvement of NADPH-cytochrome c reductase in the rat liver squalene epoxidase system, Biochim. Biophys. Acta 486:401–407.

    PubMed  CAS  Google Scholar 

  • Ono, T., Takahashi, K., Odani, S., Konno, H., and Imai, Y., 1980, Purification of squalene epoxidase from rat liver microsomes, Biochem. Biophys. Res. Commun. 96:522–528.

    PubMed  CAS  Google Scholar 

  • Osumi, T., Nishino, T., and Katsuki, H., 1979, Studies on the delta 5-desaturation in ergosterol biosynthesis in yeast, J. Biochem. (Tokyo) 85:819–826.

    CAS  Google Scholar 

  • Paik, Y. K., and Gaylor, J. L., 1982, Complete resolution and reconstitution of cholesterol synthesis from lanosterol:Nonoxidative enzymes, 184th ACS meeting, Kansas City, Missouri, Abstract No. 39.

    Google Scholar 

  • Paik, Y. K., Shafiee, A., and Gaylor, J. L., 1984, Microsomal enzymes of cholesterol biosynthesis from lanosterol:Characterization of the Δ8,14-steroid 14-reductase, J. Biol. Chem., in press.

    Google Scholar 

  • Pascal, R. A., and Schroepfer, G. J., 1980, Enzymatic isomerization (Δ7 → Δ8) of the nuclear double bond of 14α-methyl substituted sterol precursors of cholesterol, Biochem. Biophys. Res. Commun. 94:932–939.

    PubMed  CAS  Google Scholar 

  • Popjak, G., 1959, Biosynthesis of derivatives of allylic alcohols from mevalonate-2-C14 in liver enzyme preparations and their relation to the synthesis of squalene, Tetrahedron Lett. 19:19–28.

    Google Scholar 

  • Popjak, G., and Agnew, W. S., 1979, Squalene synthetase, Mol. Cell. Biochem. 27:97–116.

    PubMed  CAS  Google Scholar 

  • Qureshi, A. A., Beytia, E., and Porter, J. W., 1973, Squalene synthetase. II. Purification and properties of baker’s yeast enzyme, J. Biol. Chem. 248:1848–1855.

    PubMed  CAS  Google Scholar 

  • Rahimtula, A. D., and Gaylor, J. L., 1972, Investigation of the component reactions of oxidative sterol demethylation. Partial purification of a microsomal sterol 4α-carboxylic acid decarboxylase, J. Biol. Chem. 247:9–15.

    PubMed  CAS  Google Scholar 

  • Reddy, V. V. R., and Caspi, E., 1976, The mechanism of C-5(6) double-bond introduction in the biosynthesis of cholesterol by rat liver microsomes. Consideration of a mechanism similar to the oxidation of o-diphenols, Eur. J. Biochem. 69:577–582.

    CAS  Google Scholar 

  • Reddy, V. V. R., Kupfer, D., and Caspi, E., 1977, Mechanism of C-5 double-bond introduction in the biosynthesis of cholesterol by rat liver microsomes. Evidence for the participation of microsomal cytochrome b5, J. Biol. Chem. 252:2797–2801.

    PubMed  CAS  Google Scholar 

  • Rilling, H. C., 1966, A new intermediate in the biosynthesis of squalene, J. Biol. Chem. 241:3233–3236.

    PubMed  CAS  Google Scholar 

  • Ritter, M. C., and Dempsey, M. E., 1970, Purification and characterization of a naturally occurring activator of cholesterol biosynthesis from Δ5,7-cholestadienol and other precursors, Biochem. Biophys. Res. Commun. 38:921–929.

    PubMed  CAS  Google Scholar 

  • Ritter, M. C., and Dempsey, M. E., 1971, Specificity and role in cholesterol biosynthesis of a squalene and sterol carrier protein, J. Biol. Chem. 246:1536–1539.

    PubMed  CAS  Google Scholar 

  • Rodwell, V. W., McNamara, D. J., and Shapiro, D. J., 1973, Regulation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase, Adv. Enzymol. 38:373–412.

    CAS  Google Scholar 

  • Rodwell, V. W., Nordstrom, J. L., and Mitschelen, J. J., 1976, Regulation of HMG-CoA reductase, Adv. Lipid Res. 14:1–74.

    PubMed  CAS  Google Scholar 

  • Saat, Y. A., and Bloch, K. E., 1976, Effect of a supernatant protein on microsomal squalene epoxidase and 2,3-oxidosqualene-lanosterol cyclase, J. Biol. Chem. 251:5155–5160.

    PubMed  CAS  Google Scholar 

  • Sabine, J. R. (ed.), 1983, 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase, in:The Uniscience Series in Enzyme Biology, CRC Press, Boca Raton, in press.

    Google Scholar 

  • Scala, A., Galli-Kienie, M., Anastasia, M., and Galli, G., 1974, The reversibility of the isomerization of the Δ8 to Δ7 bond in cholesterol biosynthesis, Eur. J. Biochem. 48:263–269.

    PubMed  CAS  Google Scholar 

  • Scallen, T. J., Schuster, M. W., and Dhar, A. K., 1971, Evidence for a noncatalytic carrier protein in cholesterol biosynthesis, J. Biol. Chem. 246:224–230.

    PubMed  CAS  Google Scholar 

  • Scallen, T. J., Srikantaiah, M. V., Seetharam, B., Hansbury, E., and Gavey, K. L., 1974, Sterol carrier protein hypothesis, Fed. Proc. 33:1733–1746.

    PubMed  CAS  Google Scholar 

  • Schroepfer, G. J., 1982, Sterol biosynthesis, Annu. Rev. Biochem. 51:555–585.

    PubMed  CAS  Google Scholar 

  • Schroepfer, G. J., and Frantz, I. D., Jr., 1961, Conversion of Δ7-cholestenol-4-C14 and 7-dehydrocholesterol- 4-C14 to cholesterol, J. Biol. Chem. 236:3137–3140.

    PubMed  CAS  Google Scholar 

  • Schroepfer, G. J., Jr., Lutsky, B. N., Martin, J. A., Huntoon, S., Fourcans, B., Lee, W.-H., and Vermilion, J. L., 1972, Recent investigation on the nature of sterol intermediates in the biosynthesis of cholesterol, Proc. R. Soc. Lond. B. 180:125–146.

    CAS  Google Scholar 

  • Sharpless, K. B., Snyder, T. E., Spencer, T. A., Maheshwari, K. K., Guhn, G., and Clayton, R. B., 1968, Biological demethylation of 4,4-dimethyl sterols. Initial removal of the 4α-methyl group, J. Am. Chem. Soc. 90:6874–6875.

    CAS  Google Scholar 

  • Shechter, I., and Bloch, K., 1971, Solubilization and purification of trans-farnesyl pyrophosphate-squalene synthetase, J. Biol. Chem. 246:7690–7696.

    PubMed  CAS  Google Scholar 

  • Shechter, I., Sweat, F. W., and Bloch, K., 1970, Comparative properties of 2,3-oxidosqualene-lanosterol cyclase from yeast and liver, Biochim. Biophys. Acta 220:463–468.

    PubMed  CAS  Google Scholar 

  • Spence, J. T., and Gaylor, J. L., 1977, Investigation of regulation of microsomal hydroxymethylglutaryl coenzyme A reductase and methyl sterol oxidase of cholesterol biosynthesis, J. Biol. Chem. 252:5852–5858.

    PubMed  CAS  Google Scholar 

  • Srikantaiah, M. V., Hansbury, E., Loughran, E. D., and Scallen, T. J., 1976, Purification and properties of sterol carrier protein1, J. Biol. Chem. 251:5496–5504.

    PubMed  CAS  Google Scholar 

  • Steinberg, D., and Avigan, J., 1969, Rat liver sterol Δ24-reductase, Meth. Enzymol. 15:514–522.

    CAS  Google Scholar 

  • Swindell, A. C., and Gaylor, J. L., 1968, Investigation of the component reactions of oxidative sterol demethylation. Formation and metabolism of 3-ketosteroid intermediates, J. Biol. Chem. 243:5546–5555.

    PubMed  CAS  Google Scholar 

  • Tabacik, C., Aliau, S., Serrou, B., and de Paulet, A. C., 1981, Post-HMG-CoA reductase regulation of cholesterol biosynthesis in normal lymphocytes:Lanosten-3β-ol-32-al, a natural inhibitor, Biochem. Biophys. Res. Commun. 101:1087–1095.

    PubMed  CAS  Google Scholar 

  • Tai, H.-H., and Bloch, K., 1972, Squalene epoxidase of rat liver, J. Biol. Chem. 247:3767–3773.

    PubMed  CAS  Google Scholar 

  • Tchen, T. T., and Bloch, K., 1957, Conversion of squalene to lanosterol in vitro, J. Biol. Chem. 226:921–930.

    CAS  Google Scholar 

  • Topham, R. W., and Gaylor, J. L., 1970, Isolation and purification of a 5α-hydroxy sterol dehydrase of yeast, J. Biol. Chem. 245:2319–2327.

    PubMed  CAS  Google Scholar 

  • Topham, R. W., and Gaylor, J. L., 1972, Further characterization of the 5α-hydroxy sterol dehydrase of yeast, Biochem. Biophys. Res. Commun. 47:180–186.

    PubMed  CAS  Google Scholar 

  • Trzaskos, J. M., and Gaylor, J. L., 1983a, Cytosolic modulations of activities of microsomal enzymes of cholesterol biosynthesis. Purification and characterization of a nonspecific lipid transfer protein. Biochim. Biophys. Acta, 751:52–65.

    PubMed  CAS  Google Scholar 

  • Trzaskos, J. M., and Gaylor, J. L., 1983b, Molecular control of HMG-CoA reductase:The role of cytosolic proteins, in:3-Hydroxy-3-methylglutaryl Coenzyme A Reductase, in:The Uniscience Series in Enzyme Biology ( J. R. Sabine, ed.), CRC Press, Boca Raton.

    Google Scholar 

  • Vermilion, J. L., and Coon, M. J., 1974, Highly purified detergent-solubilized NADPH-cytochrome P-450 reductase from phenobarbital-induced rat liver microsomes, Biochem. Biophys. Res. Commun. 60:1315–1322.

    PubMed  CAS  Google Scholar 

  • Watkinson, I. A., Wilton, D. C., Munday, K. A., and Akhtar, M., 1971a, Formation and reduction of the 14,15-double-bond in cholesterol biosynthesis, Biochem. J. 121:131–137.

    PubMed  CAS  Google Scholar 

  • Watkinson, I. A., Wilton, D. C., Rahimtula, A. D., and Akhtar, M. M., 1971b, The substrate activation in some pyridine nucleotide linked enzymic reactions. The conversion of desmosterol into cholesterol, Eur. J. Biochem. 23:1–6.

    PubMed  CAS  Google Scholar 

  • Williams, M. T., Gaylor, J. L., and Morris, H. P., 1977, Characterization of microsomal sterol demethylase in two Morris hepatomas, Cancer Res. 36:291–297.

    Google Scholar 

  • Wilton, D. C., Munday, K. A., Skinner, S. J. M., and Akhtar, M., 1968, The biological conversion of 7-dehydro-cholesterol into cholesterol and comments on the reduction of double bonds, Biochem. J. 106:803–810.

    PubMed  CAS  Google Scholar 

  • Wilton, D. C., Rahimtula, A. D., and Akhtar, M., 1969, The reversibility of the Δ8-cholestenol-Δ7-cholestenol isomerase reaction in cholesterol biosynthesis, Biochem. J. 114:71–73.

    PubMed  CAS  Google Scholar 

  • Yamaga, N., and Gaylor, J. L., 1978, Characterization of the microsomal steroid-8-ene isomerase of cholesterol biosynthesis, J. Lipid Res. 19:375–382.

    PubMed  CAS  Google Scholar 

  • Yamamoto, S., and Bloch, K., 1970, Studies on squalene epoxidase of rat liver, J. Biol. Chem. 245:1670–1674.

    PubMed  CAS  Google Scholar 

  • Yamamoto, S., Lin, K., and Bloch, K., 1969, Some properties of the microsomal 2,3-oxidosqualene sterol cyclase, Proc. Natl. Acad. Sci. USA 63:110–117.

    PubMed  CAS  Google Scholar 

  • Yasukochi, Y., and Masters, B. S. S., 1976, Some properties of a detergent-solubilized NADPH-cytochrome c (cytochrome P-450) reductase purified by biospecific affinity chromatography, J. Biol. Chem. 251:5337–5344.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Trzaskos, J.M., Gaylor, J.L. (1985). Membrane-Bound Enzymes of Cholesterol Biosynthesis:Resolution and Identification of the Components Required for Cholesterol Synthesis from Squalene. In: Martonosi, A.N. (eds) The Enzymes of Biological Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2355-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2355-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9442-9

  • Online ISBN: 978-1-4613-2355-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics