Skip to main content

Phase equilibria in partial melting of pelitic rocks

  • Chapter
Migmatites

Abstract

Melting of rocks is a logical extension of normal high-grade metamorphism and there is no question that it occurs: magma exists. Many petrologists ascribe the origins of many migmatites to partial melting with segregation of solids from liquid. However, it is by no means axiomatic that all migmatites are formed essentially by this process. As we have been recently reminded by Olsen (1983), partial melting, metamorphic differentiation, injection or metasomatism are all still processes possible in the formation of migmatites, and more than one of these may be involved in the formation of a given migmatite (e.g. Johannes, 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, R.N., Jr. and Clarke, D.B. (1979) Hypothetical liquidus relationships in the subsystem Al2O3–FeO–MgO projected from quartz, alkali feldspar and plagioclase for a (H2O) ≤ 1. Can. Miner. 17, 549–560.

    Google Scholar 

  • Ackermand, D., Seifert, F. and Schreyer, W. (1975) Instability of sapphirine at high pressures. Contrib. Miner. Petrol. 50, 79–92.

    Article  Google Scholar 

  • Althaus, E., Karotke, E., Nitsch, K.H. and Winkler, H.G.F. (1970) An experimental re- examination of the upper stability limit of muscovite plus quartz. Neues Jb. Miner. Mh. 325–336.

    Google Scholar 

  • Arzi, A. A. (1978) Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44, 173–184.

    Article  Google Scholar 

  • Ashworth, J.R. (1975) Staurolite at anomalously high grade. Contrib. Miner. Petrol. 53, 281–291.

    Article  Google Scholar 

  • Barrow, G. (1893) On an intrusion of muscovite-biotite gneiss in the east Highlands of Scotland, and its accompanying metamorphism. Q.J. Geol. Soc. Lond. 49, 330–358.

    Article  Google Scholar 

  • Berg, J.H. (1977) Dry granulite mineral assemblages in the contact aureoles of the Nain Complex, Labrador. Contrib. Miner. Petrol. 64, 33–52.

    Article  Google Scholar 

  • Berg, J.H. and Wheeler, E.P. (1976) Osumilite of deep-seated origin in the contact aureole of the anorthositic Nain Complex, Labrador. Am. Miner. 61, 29–37.

    Google Scholar 

  • Bird, G.W. and Fawcett, J.J. (1973) Stability relations of Mg-chlorite, muscovite and quartz between 5 and 10 kb water pressure. J. Petrol. 14, 415–428.

    Google Scholar 

  • Bohlen, S.R. and Dollase, W.A. (1983) Calibration of hercynite-quartz stability. Geol. Soc. Am. Abstr. Programs 15, 529.

    Google Scholar 

  • Bohlen, S.R., Wall, V.J. and Boettcher, A.L. (1983a) Geobarometry in granulites. In Kinetics and Equilibrium in Mineral Reactions, ed. Saxena, S.K., Springer-Verlag, New York, 141–171.

    Google Scholar 

  • Bohlen, S.R., Boettcher, A.L., Wall, V.J. and Clemens, J.D. (19836) Stability of phlogopite-quartz and sanidine-quartz: a model for melting in the lower crust. Contrib. Miner. Petrol. 83, 270–277.

    Google Scholar 

  • Boyd, F.R. and England, J.L. (1959) Pyrope. Yb. Carnegie Instn Wash. 58, 83–87.

    Google Scholar 

  • Brown, G.C. and Fyfe, W.S. (1970) The production of granite melts during ultra–metamorphism. Contrib. Miner. Petrol. 28, 310–318

    Article  Google Scholar 

  • Burnham, C.W., Holloway, J.R., and Davis, N.F. (1969) Thermodynamic properties of water to 1000 °C and 10,000 bars. Geol. Soc. Am. Spec. Pap. 132.

    Google Scholar 

  • Carmichael, D.M. (1970) Intersecting isograds in the Whetstone Lake area, Ontario. J. Petrol. 11, 147–181.

    Google Scholar 

  • Chappell, B.W. and White, A.J.R. (1974) Two contrasting granite types. Pacific Geol. 8, 173–174.

    Google Scholar 

  • Chatterjee, N.D. and Johannes, W. (1974) Thermal stability and standard thermodynamic properties of synthetic 2M1–muscovite, KAl2[AlSi3O1O(OH)2]. Contrib. Miner. Petrol. 48, 89–114.

    Article  Google Scholar 

  • Clarke, D.B. (ed.) (1981) Peraluminous granites. Can. Miner. 19, 1–216.

    Google Scholar 

  • Clemens, J.D. and Wall, V.J. (1981) Origin and crystallization of some peraluminous (S–type) granitic magmas. Can. Miner. 19, 111–131.

    Google Scholar 

  • Day, H.W. (1971) A Theoretical and Experimental Study of Some Equilibria in the System K–Fe– Al–Si–O–H. Unpubl. Ph.D. Thesis, Brown University.

    Google Scholar 

  • Day, H.W. (1973) The high temperature stability of muscovite plus quartz. Am. Miner. 58, 255–262.

    Google Scholar 

  • Eggler, D.H. (1973) Principles of melting of hydrous phases in silicate melt. Yb. Carnegie Instn Washington 72, 491–495.

    Google Scholar 

  • Ellis, D.J., Sheraton, J.W., England, R.N., and Dallwitz, W.B. (1980) Osumilite–sapphirine-quartz granulites from Enderby Land, Antarctica—mineral assemblages and reactions. Contrib. Miner. Petrol. 72, 123–143.

    Article  Google Scholar 

  • England, P.C., and Richardson, S.W. (1977) The influence of erosion upon the mineral facies of rocks from different metamorphic environments. J. Geol. Soc. Lond. 134, 201–213.

    Article  Google Scholar 

  • Essene, E.J. (1982) Geologic thermometry and barometry. Rev. Miner. (Min. Soc. Amer) 10, 153– 206.

    Google Scholar 

  • Eugster, H.P. and Wones, D.R. (1962) Stability relations of the ferruginous biotite, annite. J. Petrol. 3, 82–125.

    Google Scholar 

  • Evans, B.W. (1965) Application of a reaction–rate method to the breakdown equilibria of muscovite and muscovite plus quartz. Am. J. Sci. 263, 647–667.

    Article  Google Scholar 

  • Fyfe, W.S., Turner, F.J., and Verhoogen, J. (1958) Metamorphic reactions and metamorphic facies. Geol. Soc. Am. Mem. 73.

    Google Scholar 

  • Fyfe, W.S., Price, N.J., and Thompson, A.B. (1978) Fluids in the Earth’s Crust. Elsevier, Amsterdam.

    Google Scholar 

  • Ganguly, J. (1972) Staurolite stability and related parageneses: theory, experiments and applications: J. Petrol. 13, 335–365.

    Google Scholar 

  • Gibbs, G.V. (1966) The polymorphism of cordierite: I. The crystal structure of low cordierite. Am. Miner. 51, 1068–1087.

    Google Scholar 

  • Grant, J.A. (1968) Partial melting of common rocks as a possible source of cordierite anthophyllite assemblages. Am. J. Sci. 266, 908–931.

    Article  Google Scholar 

  • Grant, J.A. (1973) Phase equilibria in high-grade metamorphism and partial melting of pelitic rocks, Am. J. Sci. 273, 289–317.

    Article  Google Scholar 

  • Grant, J.A. (1981) Orthoamphibole and orthopyroxene relations in high-grade metamorphism of pelitic rocks. Am. J. Sci. 281, 1127–1143.

    Article  Google Scholar 

  • Grant, J.A. (1982) Low pressure equilibria in anatexis of pelitic rocks. Geol. Soc. Am. Abstr. Programs 14, 501.

    Google Scholar 

  • Grant, J.A. (1983a) Equilibria in low-pressure melting of pelitic rocks (Abstract). In Migmatites, Melting and Metamorphism, eds. Atherton, M.P. and Gribble, C.D., Shiva, Nantwich, 292–293.

    Google Scholar 

  • Grant, J.A. (1983b) Quartz-present and quartz-absent equilibria in partial melting of pelitic rocks. Geol. Soc. Am. Abstr. Programs 15, 584.

    Google Scholar 

  • Grant, J.A. (1984) Relationships between vapor-present and vapor-absent melting in the system KMASCH. Geol. Soc. Am. Abstr. Programs 16, 523.

    Google Scholar 

  • Grant, J.A. (1984) Relationships between vapor-present and vapor-absent melting in the system KMASCH. Geol. Soc. Am. Abstr. Programs 16, 523.

    Google Scholar 

  • Grant, J.A. and Hoffer, E. (1977) Reactions in pelitic migmatites in the light of hydrothermal melting experiments involving Mg–Fe cordierite. Geol. Soc. Am. Abstr. Programs 9, 994.

    Google Scholar 

  • Green, T.H. (1976) Experimental generation of cordierite-or garnet-bearing granitic liquids from apelitic composition. Geology 4, 85–88.

    Article  Google Scholar 

  • Greenwood, H.J. (1962) Metamorphic reactions involving two volatile components. Yb. Carnegie Instn. Wash. 61, 82–85.

    Google Scholar 

  • Greenwood, H.J. (1967) Mineral equilibria in the system MgO–SiO2–H2O–CO2. In Researches in Geochemistry, vol. 2, ed. Abelson, P.H., Wiley, New York, 542–567.

    Google Scholar 

  • Greenwood, H.J. (1975) The buffering of pore fluids by metamorphic reactions. Am. J. Sci. 275, 573–593.

    Article  Google Scholar 

  • Grew, E.S. (1981) Granulite-facies metamorphism at Molodezhnaya Station, East Antarctica. J. Petrol. 22, 297–336.

    Google Scholar 

  • Haggerty, S.E. (1983) Oxide-silicate reactions in lower crustal granulites from Liberia, West Africa. Geol. Soc. Am. Abstr. Programs 15, 589.

    Google Scholar 

  • Hargraves, R.B. (ed.) (1980) Physics of Magmatic Processes. Princeton Univ. Press, Princeton, N.J.

    Google Scholar 

  • Harris, N. (1981) The application of spinel-bearing metapelites to P/T determinations: an example from South India. Contrib. Miner. Petrol. 76, 229–233.

    Article  Google Scholar 

  • Harris, N.B.W., Holt, R.W. and Drury, S.A. (1982) Geobarometry, geothermometry, and Late Archean geotherms from the granulite facies terrain of South India. J. Geol. 90, 509–527.

    Article  Google Scholar 

  • Helgeson, H.C. (1967) Solution chemistry and metamorphism. In Researches in Geochemistry, vol. 2, ed. Abelson, P.H, Wiley, New York, 362–404.

    Google Scholar 

  • Helgeson, H.C. (1968) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions–I. Thermodynamic relations. Geochim. Cosmochim. Acta 32, 853–877.

    Article  Google Scholar 

  • Helgeson, H.C., Garrels, R.M. and Mackenzie, F.T. (1969) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions–II. Applications. Geochim. Cosmochim. Acta 33, 455–481.

    Article  Google Scholar 

  • Helgeson, H.C., Delany, J.M., Nesbitt, H.W. and Bird, D.K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am. J. Sci. 278A.

    Google Scholar 

  • Hensen, BJ. (1971) Theoretical phase relations involving cordierite and garnet in the system MgO–FeO–Al2O3–SiO2. Contrib. Miner. Petrol. 33, 191–214.

    Article  Google Scholar 

  • Hensen, B.J. (1977) The stability of osumilite in high grade metamorphic rocks. Contrib. Miner. Petrol. 64, 197–204.

    Article  Google Scholar 

  • Hensen, B.J., and Essene, E.J. (1971) Stability of pyrope-quartz in the system MgO–Al2O3– SiO2. Contrib. Miner. Petrol. 30, 72–83.

    Article  Google Scholar 

  • Hoffer, E. and Grant, J.A. (1980) Experimental investigation of the formation of cordierite-orthopyroxene parageneses in pelitic rocks. Contrib. Miner. Petrol. 73, 15–22.

    Article  Google Scholar 

  • Holdaway, M.J. and Lee, S.M. (1977) Fe-Mg cordierite stability in high-grade pelitic rocks based on experimental, theoretical, and natural observations. Contrib. Miner. Petrol. 63, 175–198.

    Article  Google Scholar 

  • Hollister, L.S. and Burruss, R.C. (1976) Phase equilibria in fluid inclusions from the Khtada Lake metamorphic complex. Geochim. Cosmochim. Acta 40, 163–175.

    Article  Google Scholar 

  • Holloway, J.R. (1973) The system pargasite–H2O–C02: a model for melting of a hydrous mineral with a mixed-volatile fluid—I. Experimental results to 8 kbar. Geochim. Cosmochim. Acta 37, 651–666.

    Article  Google Scholar 

  • Holloway, J.R. (1976) Fluids in the evolution of granitic magmas: consequences of finite C02 solubility. Geol. Soc. Am. Bull. 87, 1513–1518.

    Article  Google Scholar 

  • Huang, W.L. and Wyllie, P.J. (1974) Melting relations of muscovite with quartz and sanidine in the K2O–Al2O3–SiO2–H2O system to 30 kilobars and an outline of paragonite melting relations. Am. J. Sci. 274, 378–395.

    Article  Google Scholar 

  • Jaeger, J.C. (1957) The temperature in the neighborhood of a cooling intrusive sheet. Am. J. Sci. 255, 306–318.

    Article  Google Scholar 

  • Jaeger, J.C. (1959) Temperatures outside a cooling intrusive sheet. Am. J. Sci. 257, 44–54.

    Article  Google Scholar 

  • Johannes, W. (1983) On the origin of layered migmatites. In Migmatites, Melting and Metamorphism, eds. Atherton, M.P. and Gribble, C.D., Shiva, Nantwich, 234–248.

    Google Scholar 

  • Kars, H., Jansen, J.B.H., Tobi, A.C. and Poorter, R.P.E. (1980) The metapelitic rocks of the polymetamorphic Precambrian of Rogaland, SW Norway, Part II. Contrib. Miner. Petrol. 74, 235–244.

    Article  Google Scholar 

  • Keesmann, I., Matthes, S., Schreyer, W. and Seifert, F. (1971) Stability of almandine in the system Fe0–(Fe203)–Al2O3–Si02–(H2O) at elevated pressures. Contrib. Miner. Petrol. 31, 132–144.

    Article  Google Scholar 

  • Kreulen, R. (1980) C02–rich fluids during regional metamorphism on Naxos (Greece): carbon isotopes and fluid inclusions. Am. J. Sci. 280, 745–771.

    Article  Google Scholar 

  • Kreulen, R. and Schuiling, R.D. (1982) N2–CH4–C02 fluids during formation of the Dome de l’Agout, France. Geochim. Cosmochim. Acta 46, 193–203.

    Article  Google Scholar 

  • Lai, R.K., Aekermand, D., Seifert, F. and Haldar, S.K. (1978) Chemographic relationships in sapphirine–bearing rocks from Sonapahar, Assam, India. Contrib. Miner. Petrol. 67, 169–187.

    Article  Google Scholar 

  • Lambert, I.B., Robertson, J.K. and Wyllie, P.J. (1969) Melting reactions in the system KAlSi3O8–SiO2–H2O to 18.5 Kbars. Am. J. Sci. 267, 609–626.

    Article  Google Scholar 

  • Levin, E.M., Robbins, C.R. and McMurdie, H.F. (1966) Phase Diagrams for Ceramists. American Ceramic Society, Columbus, Ohio.

    Google Scholar 

  • Lonker, S.W. (1981) The P–T–X relations of the cordierite–garnet–sillimanite–quartz equilibrium Am. J. Sci. 281, 1056–1090.

    Article  Google Scholar 

  • Luth, W.C. (1967) Studies in the system KAlSiO4–Mg2SiO4–SiO2–H2O: I, inferred phase relations and petrologic applications. J. Petrol. 8, 372–416.

    Google Scholar 

  • Luth, W.C., Jahns, R.H. and Tuttle, O.F. (1964) The granite system at pressures of 4 to 10 kilobars. J. Geophys. Res. 69, 759–773.

    Article  Google Scholar 

  • Martignole, J. and Sisi, J.-C. (1981) Cordierite-garnet–H2O equilibrium: a geological thermometer, barometer and water fugacity indicator. Contrib. Miner. Petrol, 77, 38–46.

    Article  Google Scholar 

  • Miyashiro, A. (1961) Evolution of metamorphic belts. J. Petrol 2, 277–311.

    Google Scholar 

  • Morse, S.A. (1970) Alkali feldspars with water at 5kb pressure. J. Petrol 11, 221–251.

    Google Scholar 

  • Naney, M.T. (1983) Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. Am. J. Sci. 283, 993–1033.

    Article  Google Scholar 

  • Newton, R.C. (1972) An experimental determination of the high–pressure stability limits of magnesian cordierite under wet and dry conditions. J. Geol 80, 398–420.

    Article  Google Scholar 

  • Newton, R.C. (1983) Geobarometry of high–grade metamorphic rocks. Am. J. Sci. 283-A, 1–28.

    Google Scholar 

  • Newton, R.C., and Wood, B.J. (1979) Thermodynamics of water in cordierite and some petrologic consequences of cordierite as a hydrous phase. Contrib. Miner. Petrol. 68, 391–405.

    Article  Google Scholar 

  • Newton, R.C., Smith, J.V. and Windley, B.F. (1980) Carbonic metamorphism, granulites and crustal growth. Nature 288, 45–50.

    Article  Google Scholar 

  • Olsen, S.N. (1983) A quantitative approach to local mass balance in migmatites. In Migmatites, Melting and Metamorphism, eds. Atherton, M.P. and Gribble, C.D., Shiva, Nantwich, 201–233.

    Google Scholar 

  • Powell, R. (1983a) Processes in granulite-facies metamorphism. In Migmatites, Melting and Metamorphism, eds. Atherton, M.P. and Gribble, C.D., Shiva, Nantwich, 127–139.

    Google Scholar 

  • Powell, R. (1983b) Fluids and melting under upper amphibolite facies conditions. J. Geol Soc. Lond. 140, 629–633.

    Article  Google Scholar 

  • Rao, B.B. and Johannes, W. (1979) Further data on the stability of staurolite + quartz and related assemblages. Neues Jb. Miner. Mh. 437–447.

    Google Scholar 

  • Rice, J.M. and Ferry, J.M. (1982) Buffering, infiltration, and the control of intensive variables during metamorphism. Rev. Mineralogy (Min. Soc. Amer. ) 10, 263–326.

    Google Scholar 

  • Richardson, S.W. (1968) Staurolite stability in a part of the system Fe–Al–Si–O–H. J. Petrol. 9, 467–488.

    Google Scholar 

  • Robertson, J.K. and Wyllie, P.J. (1971) Rock–water systems, with special reference to the water– deficient region. Am. J. Sci. 271, 252–277.

    Article  Google Scholar 

  • Robie, R.A., Bethke, P.M. and Beardsley, K.M. (1967) Selected X-ray crystallographic data, molar volumes, and densities of minerals and related substances. U.S. Geol. Surv. Bull. 1248.

    Google Scholar 

  • Robie, R.A., Hemingway, B.S. and Fisher, J.R. (1978) Thermodynamic properties of minerals and related substances at 298.15K and 1 bar (105 pascals) pressure and at higher temperatures. U.S. Geol. Surv Bull. 1452.

    Google Scholar 

  • Robinson, P. and Tracy, R.J. (1983) Ilmenite-rutile-ferromagnesian silicate equilibria in medium-to high-grade graphitic schists. Geol. Soc. Am. Abstr. Programs 15, 672.

    Google Scholar 

  • Rutherford, M.J. (1969) An experimental determination of iron biotite-alkali feldspar equilibria. J. Petrol. 10, 381–408.

    Google Scholar 

  • Schairer, J.F. (1954) The system K2O–MgO–Al2O3–SiO2. J. Am. Ceram. Soc. 37, 501–533.

    Article  Google Scholar 

  • Schreyer, W. (1968) A reconnaissance study of the system MgO–Al2O3–SiO2–H2O at pressures between 10 and 25 kb. Yb. Carnegie Instn. Wash. 66, 380–392.

    Google Scholar 

  • Schreyer, W. (1976) Experimental metamorphic petrology at low pressures and high temperatures. In The Evolution of the Crystalline Rocks, eds. Bailey, D.K. and Macdonald, R. Academic Press, London, 261–331.

    Google Scholar 

  • Schreyer, W. and Seifert, F. (1969) Compatibility relations of the aluminum silicates in the systems MgO–Al2O3–SiO2–H2O and K2O–MgO–Al2O3–SiO2–H2O at high pressures. Am. J. Sci. 267, 371–388.

    Article  Google Scholar 

  • Seifert, F. (1970) Low-temperature compatibility relations of cordierite in haplopelites of the system K2O–MgO–Al2O3–SiO2–H2O. J. Petrol. 11, 73–99.

    Google Scholar 

  • Seifert, F. (1974) Stability of sapphirine: a study of the aluminous part of the system MgO–Al2O3– SiO2–H2O. J. Geol 82, 173–204.

    Article  Google Scholar 

  • Seifert, F. (1975) Boron-free kornerupine: a high pressure phase. Am. J. Sci. 275, 57–87.

    Article  Google Scholar 

  • Seifert, F. (1976) Stability of the assemblage cordierite + K feldspar + quartz. Contrib. Miner. Petrol. 57, 179–185.

    Article  Google Scholar 

  • Shaw, H.R. (1963) The four-phase curve sanidine-quartz-liquid-gas between 500 and 4000 bars. Am. Miner. 48, 883–896.

    Google Scholar 

  • Spear, F.S. and Selverstone, J. (1983) Quantitative P-T paths from zoned minerals: theory and tectonic applications. Contrib. Miner. Petrol. 83, 348–357.

    Article  Google Scholar 

  • Spry, P.G. (1982) An unusual gahnite-forming reaction, Geco base-metal deposit, Manitouwadge, Ontario. Can. Miner. 20, 549–553.

    Google Scholar 

  • Storre, B. and Karotke, E. (1971) An experimental determination of the upper stability limit of muscovite + quartz in the range 7-20 kb water pressure. Neues Jb. Miner. Mh. 237–240.

    Google Scholar 

  • Storre, B. and Karotke, E. (1972) Experimental data on melting reactions of muscovite + quartz in the system K2O–Al2O3–SiO2–H2O to 20 kb water pressure. Contrib. Miner. Petrol. 36, 343–345.

    Article  Google Scholar 

  • Thompson, A.B. (1976) Mineral reactions in pelitic rocks: II. Calculation of someP–T–X (Fe–Mg) phase relations. Am. J. Sci. 276, 425–454.

    Article  Google Scholar 

  • Thompson, A.B. (1982) Dehydration melting of pelitic rocks and the generation of H2O– undersaturated granitic liquids. Am. J. Sci. 282, 1567–1595.

    Article  Google Scholar 

  • Thompson, A.B. (1983) Fluid–absent metamorphism. J. Geol. Soc. Lond. 140, 533–547.

    Article  Google Scholar 

  • Thompson, A.B. and Algor, J.R. (1977) Model systems for anatexis of pelitic rocks. I. Theory of melting reactions in the system KA1O2–NaA1O2–SiO2–H2O. Contrib. Miner. Petrol. 63, 247– 269.

    Google Scholar 

  • Thompson, A.B. and Tracy, R.J. (1979) Model systems for anatexis of pelitic rocks. II. Facies series melting and reactions in the system CaO–KA1O2–NaA1O2–Al2O3–SiO2–H2O. Contrib. Miner. Petrol. 70, 429–438.

    Article  Google Scholar 

  • Touret, J. (1971) Le facies granulite en Norvege meridionale: II. Les inclusions fluides. Lithos 4, 423–436.

    Article  Google Scholar 

  • Tracy, R.J. (1978) High grade metamorphic reactions and partial melting in pelitic schist, west-central Massachusetts. Am. J. Sci. 278, 150–178.

    Article  Google Scholar 

  • Tuttle, O.F. and Bowen, N.L. (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. Geol. Soc. Am. Mem. 74.

    Google Scholar 

  • Velde, B. (1965) Phengitic micas: synthesis, stability, and natural occurrence. Am. J. Sci. 263, 886–913.

    Article  Google Scholar 

  • Vielzeuf, D. (1983) The spinel and quartz associations in high grade xenoliths from Tallante (S. E. Spain) and their potential use in geothermometry and barometry. Contrib. Miner. Petrol. 82, 301–311.

    Google Scholar 

  • Vielzeuf, D. and Boivin, P. (1984) An algorithm for the construction of petrogenetic grids: application to some equilibria in granulitic paragneisses. Am. J. Sci. 284, 760–791.

    Article  Google Scholar 

  • Walther, J.V. and Orville, P.M. (1982) Volatile production and transport in regional meta-morphism. Contrib. Miner. Petrol. 79, 252–257.

    Article  Google Scholar 

  • Wendlandt, R.F. (1981) Influence of CO2 on melting of model granulite facies assemblages: a model for the genesis of charnockite. Am. Miner. 66, 1164–1174.

    Google Scholar 

  • Winkler, H.G.F. (1979) Petrogenesis of Metamorphic Rocks. 5th edn., Springer-Verlag, New York.

    Google Scholar 

  • Winkler, H.G.F., Boese, M. and Marcopoulos, T. (1975) Low temperature granitic melts. Neues Jb. Miner. Mh. 245–268.

    Google Scholar 

  • Wones, D.R. and Dodge, F.C.W. (1966) On the stability of phlogopite. Geol. Soc. America Ann. Mtg. 1966, Abstr. 243.

    Google Scholar 

  • Wones, D.R. and Dodge, F.C.W. (1977) The stability of phlogopite in the presence of quartz. In Thermodynamics in Geology, ed. Fraser, D.G., Reidel, Boston, 229–247.

    Google Scholar 

  • Wyllie, P.J. (1977a) Crustal anatexis: An experimental review. Tectonophysics 43, 41–71.

    Article  Google Scholar 

  • Wyllie, P.J. (1911b) Effects of H2O and CO2 on magma generation in the crust and mantle. J. Geol. Soc. Lond. 134, 215–234.

    Article  Google Scholar 

  • Wyllie, P.J. and Tuttle, O.F. (1960) The system CaO–CO2–H2O and the origin of carbonatites. J. Petrol. 1, 1–46.

    Google Scholar 

  • Yardley, B.W.D. Shepherd, T.J. and Barber, J.P. (1983) Fluid inclusion studies of high–grade rocks from Connemara, Ireland. In Migmatites, Melting and Metamorphism, eds. Atherton, M.P. and Gribble, C.D, Shiva, Nantwich, 110–126.

    Google Scholar 

  • Yoder, H.S, Jr. (1952) The Mg0–Al203–Si02–H2O system and the related metamorphic facies. Am. J. Sci. 250a, 569–627.

    Google Scholar 

  • Yoder, H.S, Jr. and Kushiro, I. (1969) Melting of a hydrous phase: phlogopite. Am. J. Sci. 267-A, 558–582.

    Google Scholar 

  • Zen, E–an (1967) Time and space relationships of the Taconic allochthon and autochthon. Geol. Soc. Am. Spec. Pap. 97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Blackie & Son Ltd

About this chapter

Cite this chapter

Grant, J.A. (1985). Phase equilibria in partial melting of pelitic rocks. In: Ashworth, J.R. (eds) Migmatites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2347-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2347-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9438-2

  • Online ISBN: 978-1-4613-2347-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics