Microvascular Measurements in Patients with Arteriosclerosis

  • Jan Östergren
  • Bengt Fagrell
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 59)

Abstract

Arteriosclerosis in advanced stages will lead to insufficient blood flow to the tissues causing various symptoms. However, even in severe arteriosclerosis the tissue will survive as long as nutritional blood flow is sufficient. This fact underlines the importance of clinical microvascular studies in patients with arteriosclerosis as a means for assessing prognosis and the effects of therapeutic interventions. Furthermore, several pathophysiological mechanisms in the microcirculation distal to arterial obstruction may be elucidated by such studies.

Keywords

Ischemia Radioactive Isotope Prostaglandin Fluorescein PGE1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heuter C. Die cheilo-angioskopie, eine neue Untersuchungsmethode zu physiologischen und pathologischen zwecken. Centralblatt fur die Medizinischen Wissenschaften 1879; 13: 15.Google Scholar
  2. 2.
    Fagrell B. Vital capillary microscopy — A clinical method for studying changes of the nutritional skin capillaries in legs with arteriosclerosis obliterans. Scand J Clin Lab Invest 1973; suppl. 133.Google Scholar
  3. 3.
    Fagrell B. The effect of pyridinolcarbamate on the skin microcirculation in patients with skin necrosis. VASA 1976; 5: 366–372.PubMedGoogle Scholar
  4. 4.
    Fagrell B, and Hermansson IL. Wirkung von Buflomedil auf die Mikrozirkulation der Haut bei Akralgangran. Fortschr Med 1985; 103: 23–27.PubMedGoogle Scholar
  5. 5.
    Fagrell B, and Lundberg G. A simplified evaluation of vital capillary microscopy for predicting skin viability in patients with severe arterial insufficiency. Clin Physiol 1984; 4: 403–411.PubMedCrossRefGoogle Scholar
  6. 6.
    Fagrell B, Fronek A, Intaglietta M. A microscope television system for studying flow velocity in human skin capillaries. Am J Physiol 1977; 233(2): H318–H321.PubMedGoogle Scholar
  7. 7.
    Östergren J, Fagrell B. Skin capillary blood cell velocity in patients with arterial obliterative disease and polycythaemia — A disturbed reactive hyperemia response. Clin Physiol 1985; 5: 35–43.PubMedCrossRefGoogle Scholar
  8. 8.
    Fagrell B, Östergren J. Capillary blood flow in ischemic skin areas and the effect of a vasoactive substance. San Diego Symposium on noninvasive diagnostic techniques in vascular disease, 1982.Google Scholar
  9. 9.
    Junger M, Jager K, Schneider E, and Bollinger A. Edema formation and distribution of microvascular flow in severe foot ischemia before and after peripheral transluminal angioplasty (PTA). Int J Microcirc: Clin Exp 1984; 3: 555.Google Scholar
  10. 10.
    Gillespie JA. The case against vasodilator drugs in occlusive vascular disease of the legs. Lancet 1959; 2: 995–997.PubMedCrossRefGoogle Scholar
  11. 11.
    Tonnesen KH. Transcutaneous oxygen tension in imminent foot gangrene. Acta Anaesth Scand Suppl. 1978; 68: 107–110.CrossRefGoogle Scholar
  12. 12.
    Franzeck UK, Fronek A, Talke P, Bernstein EF. Transcutaneous PO2 measurements in health and peripheral arterial occlusive disease. Bibl Anat 1981; 20: 688–691, (Karger, Basel).Google Scholar
  13. 13.
    Spence VA, Walker WF. Tissue oxygen tension in normal and ischaemic human skin. Cardiovasc Res 1984; 18: 140–144.PubMedCrossRefGoogle Scholar
  14. 14.
    Borzykowski J, Krahenbuhl B. Measurement of transcutaneous oxygen tension to follow up lower limb arterial occlusive disease. VASA 1981; 10: 137–140.PubMedGoogle Scholar
  15. 15.
    Eickhoff IH, Jacobsen E. Correlation of transcutaneous oxygen tension to blood flow in heated skin. Scand J Clin Lab Invest 1980; 40: 761–765.PubMedCrossRefGoogle Scholar
  16. 16.
    Östergren J. Fagrell B, Swedman P. The effect of venous and arterial occlusions on skin capillary blood flow and transcutaneous oxygen tension in fingers. Int J Microcirc: Clin Exp 1983; 2: 315–324.Google Scholar
  17. 17.
    Matsen FA, Wyss CR, Robertson C, Oberg PA, Holloway GA. The relationship of transcutaneous PO2 and Laser Doppler measurements in a human model of local arterial insufficiency. Surg Gynecol Obstet 1984; 159: 418–422.PubMedGoogle Scholar
  18. 18.
    Agerskov K. Influence of thigh blood flow upon the arterial pressure gradient over the collateral arteries in patients with occlusion of the superficial femoral artery. Cardiovasc Res 1982; 16: 304–307.PubMedCrossRefGoogle Scholar
  19. 19.
    Eickhoff JH, Engell HC Changes after arterial reconstruction in the forefoot local vasoconstrictor response to increased venous transmural pressure. Europ J Clin Invest 1982; 12: 313–319.PubMedCrossRefGoogle Scholar
  20. 20.
    Lindbjerg IF, Andersen AM, Munck I, and Jorgensen M. The fat content of leg muscles and its influence on the 133xenon clearance method of blood flow measurement. Scand J Clin Lab Inv 1966; 18: 525–534.CrossRefGoogle Scholar
  21. 21.
    Bjerre-Jepsen K, Faris I, Henriksen O, Lassen NA. Subcutaneous blood flow over 24-hour periods in patients with severe leg ischaemia. Clin Physiol 1982; 2: 357–362.PubMedCrossRefGoogle Scholar
  22. 22.
    Jelnes, R, Bulow J. Evaluation of a method for determination of the subcutaneous blood flow in the forefoot continuously over 24 hours. Scand J Clin Invest 1984; 44: 85–90.PubMedCrossRefGoogle Scholar
  23. 23.
    Lund F. Fluorescein angiography of the skin in diagnosis, prognosis and evaluation of therapy in peripheral arterial disease. Bibl anat 1977; 16: 257–262 (Karger, Basel).PubMedGoogle Scholar
  24. 24.
    Perbeck L. Prediction of viability of ischemic lower extremities by fluorescein flowmetry. Int J Microcirc: Clin Exp 1985; 4: 209.Google Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1987

Authors and Affiliations

  • Jan Östergren
    • 1
  • Bengt Fagrell
    • 1
  1. 1.Karolinska Institute, Department of MedicineDanderyd HospitalDanderyd, StockholmSweden

Personalised recommendations