Skip to main content

Biochemical Rationale for Selectivity in the Modulation of Methotrexate Activity During Leucovorin Rescue or Early Nucleoside Protection

  • Chapter
Biochemical Modulation of Anticancer Agents: Experimental and Clinical Approaches

Part of the book series: Developments in Oncology ((DION,volume 47))

  • 53 Accesses

Abstract

The first successful modulation of the selectivity of an antineoplastic agent was demonstrated by Goldin and his coworkers in the 1950 ’s with the leucovorin rescue phenomenon as an approach to the enhancement of the chemotherapeutic efficacy of 4-amino antifolates in murine tumor systems (1). This modality was introduced in the clinics in the following decade and remains an important component of many chemotherapeutic regimens (2, 3). Despite its widespread use, neither the mechanism by which leucovorin circumvents the biochemical and cytotoxic effects of methotrexate nor the selectivity of this phenomenon have been clearly elucidated; this area remains a focus of investigative activities in this and other laboratories. There have been other approaches utilized in an attempt to modulate antifolate activity, for instance, the application of thymidine in regimens with methotrexate (4, 5, 6). This nucleoside circumvents the need for tetrahydrofolate cofactors by providing the end-product of tetrahydrofolate-dependent thymidylate synthesis. However, no clear biochemical rationale has been defined that could provide a basis for an inherent selectivity in the use of thymidine with methotrexate as an antineoplastic regimen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldin A, Venditti JM, Kline I, Mantel N: Eradication of leukemic cells (L1210) by methotrexate and methotrexate plus citrovorum factor. Nature 212: 1548–1550, 1966.

    Article  PubMed  CAS  Google Scholar 

  2. Frei E, Jaffe N, Tattersall MHN et al: New approaches to cancer chemotherapy with methotrexate. N. Engl. J. Med. 292: 846–851, 1975.

    Article  PubMed  Google Scholar 

  3. Djerassi I: High-dose methotrexate and citrovorum factor rescue: Background and rationale. Cancer Chemotherapy Rept. 6: 3–6, 1975.

    Google Scholar 

  4. Howell SB, Herbst K, Bass GR, Frei E III: Thymidine requirements for the rescue of patients treated with highdose methotrexate. Cancer Res. 40: 1824–1829, 1980.

    PubMed  CAS  Google Scholar 

  5. Howell SB, Ensminger WD, Krishan A, Frei E III: Thymidine rescue of high-dose methotrexate in humans. Cancer Res. 38: 325–330, 1978.

    PubMed  CAS  Google Scholar 

  6. Schornagel JH, Leyva A, Pinedo HM: Methotrexate with thymidine protection or rescue in advanced head and neck cancer: A Phase II study. Cancer Treat. Rept. 68: 543–546, 1984.

    CAS  Google Scholar 

  7. Goldman ID: The mechanism of action of methotrexate. I. Interaction with a low affinity intracellular site required for maximum inhibiton of deoxyribonucleic acid synthesis in L-cell mouse fibroblasts. Mol. Pharmacol. 10: 257–274, 1974.

    CAS  Google Scholar 

  8. Jackson RC, Harrap KR: Studies with a mathematical model of folate metabolism. Arch. Biochem. Biophys. 158: 827–841, 1973.

    Article  PubMed  CAS  Google Scholar 

  9. Jackson RC, Niethammer D, Hart LI: Reactivation of dihydrofolate reductase inhibited by methotrexate or aminopterin. Arch. Biochem. Biophys. 182: 646–656, 1977.

    Article  PubMed  CAS  Google Scholar 

  10. White JC, Goldman ID: The mechanism of action of methotrexate. IV. Free intracellular methotrexate required to suppress dihydrofolate reduction to tetrahydrofolate by Ehrlich ascites tumor cells in vitro. Mol. Pharmacol. 12: 711–719, 1976.

    CAS  Google Scholar 

  11. White JC, Loftfield S, Goldman ID: The mechanism of action of methotrexate. III. Free intracellular methotrexate is required for maximum suppression of 14C-formate incorporation into nucleic acids and proteins. Mol. Pharmacol. 11: 287–297, 1975.

    PubMed  CAS  Google Scholar 

  12. Moran RG, Werkheiser WC, Zakrzewski SF: Folate metabolism in mammalian cells in culture: I. Partial characterization of the folate derivatives present in L1210 mouse leukemia cells. J. Biol. Chem. 251: 3569–3575, 1976.

    CAS  Google Scholar 

  13. Goldman ID: Transport energetics of the folic acid analogue, methotrexate, in L1210 cells: Enhanced accumulation by metabolic inhibitors. J. Biol. Chem. 244: 3779–3785, 1969.

    PubMed  CAS  Google Scholar 

  14. White JC: Reversal of methotrexate binding to dihydrofolate reductase by dihydrofolate. Studies with purified enzyme and computer modelling using network thermodynamics. J. Biol. Chem. 254: 10889–10895, 1979.

    CAS  Google Scholar 

  15. Baugh CM, Krumdieck CL, Nair MS: Polyglutamyl metabolites of methotrexate. Biochem. Biophys. Res. Commun. 52: 27–34, 1973.

    Article  PubMed  CAS  Google Scholar 

  16. Fry DW, Yalowich JC, Goldman ID: Rapid formation of polyglutamyl derivatives of methotrexate and their association with dihydrofolate reductase as assessed by high pressure liquid chromatography in the Ehrlich ascites tumor cell in vitro. J. Biol. Chem. 257: 1890–1896, 1982.

    PubMed  CAS  Google Scholar 

  17. Galivan J: Evidence for the cytotoxic activity of polyglutamate derivatives of methotrexate. Mol. Pharmacol. 17: 105–110, 1980.

    PubMed  CAS  Google Scholar 

  18. Jolivet J, Schilsky RL, Bailey BD et al: Synthesis, retention, and biological activity of methotrexate polyglutamates in cultured human breast cancer cells. J. Clin. Invest. 70: 351–360, 1982.

    Article  PubMed  CAS  Google Scholar 

  19. Rosenblatt DS, Whitehead VM, Vera N et al: Prolonged inhibition of DNA synthesis associated with the accumulation of methotrexate polyglutamates in cultured human cells. Mol. Pharmacol. 14: 1143–1147, 1978.

    PubMed  CAS  Google Scholar 

  20. Fabre I, Fabre G, Goldman ID: Polyglutamylation, an important element in methotrexate cytotoxicity and selectivity in tumor versus murine granulocytic progenitor cells in vitro. Cancer Res. 44: 3190–3195, 1984.

    PubMed  CAS  Google Scholar 

  21. Rosenblatt DS, Whitehead VM, Matiaszak HV et al: Differential effects of folinic acid and glycine, adenosine and thymidine as rescue agents in methotrexate-treated human cells in relation to the accumulation of methotrexate polyglutamates. Mol. Pharmacol. 21: 718–722, 1982.

    PubMed  CAS  Google Scholar 

  22. Fry DW, Anderson LA, Borst M, Goldman ID: Analysis of the role of membrane transport and polyglutamylation of methotrexate in gut and the Ehrlich tumor in vivo as factors in drug sensitivity and selectivity. Cancer Res. 43: 1087–1092, 1983.

    PubMed  CAS  Google Scholar 

  23. Sirotnak FM, Moccio DM, Dorick DM: Optimization of highdose methotrexate with leucovorin rescue therapy in the L1210 leukemia and Sarcoma 180 murine tumor models. Cancer Res. 38: 345–353, 1978.

    PubMed  CAS  Google Scholar 

  24. Poser RG, Sirotnak FM, Chello PL: Differential synthesis of methotrexate polyglutamates in normal proliferative and neoplastic mouse tissues in vivo. Cancer Res. 41: 4441–4446, 1981.

    PubMed  CAS  Google Scholar 

  25. Koizomi S, Curt GA, Fine RL et al: Formation of methotrexate polyglutamates in purified myeloid precursor cells from normal human bone marrow. J. Clin. Invest. 75: 1008–1014, 1985.

    Article  Google Scholar 

  26. Eleff M, Franks PE, Wampler GL et al: Analysis of “early” thymidine/inosine protection as an adjunct to methotrexate therapy. Cancer Treat. Rep. 69: 867–874, 1985.

    PubMed  CAS  Google Scholar 

  27. Semon JH, Grindey GB: Potentiation of the antitumor activity of methotrexate by concurrent infusion of thymidine. Cancer Res. 38: 2905–2911, 1978.

    PubMed  CAS  Google Scholar 

  28. Weinblatt ME, Coblyn JS, Fox DA et al: Efficacy of lowdose methotrexate in rheumatoid arthritis. N. Engl. J. Med. 312: 818–822, 1985.

    Article  PubMed  CAS  Google Scholar 

  29. Galivan J, Nimec Z: Effects of folinic acid on hepatoma cells containing methotrexate polyglutamates. Cancer Res. 43: 551–555, 1983.

    PubMed  CAS  Google Scholar 

  30. Nimec Z, Galivan J: Regulatory aspects of the glutamylation of methotrexate in cultured hepatoma cells. Arch. Biochem. Biophys. 226: 671–680, 1983.

    Article  PubMed  CAS  Google Scholar 

  31. Matherly LH, Barlowe CK, Goldman ID: Antifolate polyglutamylation: A selective determinant of leucovorin rescue. In: Proceedings of the Second Workshop on Folyl and Anti-folyl Polyglutamates, Goldman ID (ed), New York, Praeger, 1985, pp. 256–272.

    Google Scholar 

  32. Nahas A, Nixon PF, Bertino JR: Uptake and metabolism of N5-formyltetrahydrofolate by L1210 leukemia cells. Cancer Res. 32: 1416–1421, 1972.

    PubMed  CAS  Google Scholar 

  33. Matherly LH, Anderson LA, Goldman ID: Role of the cellular oxidation-reduction state in methotrexate binding to di-hydrofolate reductase and dissociation induced by reduced folates. Cancer Res. 44: 2325–2330, 1984.

    PubMed  CAS  Google Scholar 

  34. Matherly LH, Fry DW, Goldman ID: Role of methotrexate polyglutamylation and cellular energy metabolism in inhibition of methotrexate binding to dihydrofolate reductase by 5-formyltetrahydrofolate in Ehrlich ascites tumor cells in vitro. Cancer Res. 43: 2694–2699, 1983.

    PubMed  CAS  Google Scholar 

  35. White JC: Predictions of a network thermodynamic computer model relating to the mechanism of methotrexate rescue by 5-formyltetrahydrofolate and to the importance of inhibition of thymidylate synthase by methotrexate polyglutamates. In: Folyl and Antifolyl Polyglutamates, Goldman ID, Chabner BA, Bertino JR (eds), New York, Plenum Press, 1983, pp. 305–327.

    Google Scholar 

  36. Jackson RC, Fry DW, Boritzki TJ et al: Biochemical pharmacology of the lipophilic antifolate, trimetrexate. Adv. Enz. Reg. 22: 187–206, 1984.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Goldman, I.D., Matherly, L.H. (1986). Biochemical Rationale for Selectivity in the Modulation of Methotrexate Activity During Leucovorin Rescue or Early Nucleoside Protection. In: Valeriote, F.A., Baker, L.H. (eds) Biochemical Modulation of Anticancer Agents: Experimental and Clinical Approaches. Developments in Oncology, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2331-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2331-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9432-0

  • Online ISBN: 978-1-4613-2331-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics