Skip to main content

Part of the book series: Developments in Oncology ((DION,volume 47))

Abstract

Unlike antimicrobial chemotherapy where a high degree of selective toxicity can be achieved, cancer chemotherapists are still searching for more selective drugs in order to obtain cures with minimal host toxicity. While antimicrobial chemotherapy has the advantage of a biological separation of target cells from host cells, specifically between prokaryotic and eukaryotic cells, respectively, or at worst between eukaryotes such as yeast and mammalian cells, unfortunately, in cancer chemotherapy, both the target and host cells are mammalian cells. Therefore, lacking cancer-specific agents to date, we are left with using mainly quantitative differences such as proliferative rate, metabolic pathways or specific enzyme characteristics. In biochemical modulation, one attempts to expand upon these differences. Since most of the current approaches to cancer chemotherapy are directed primarily at modifying the synthesis or function of DNA or RNA, consequently biochemical modulators have mainly been applied at these loci. However, other potential loci exist, one of which is the cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Friedman SJ, Skehan P: Cell membranes: Targets for selective antitumor chemotherapy. In: Novel Approaches to Cancer Chemotherapy, Prasad S. Sunkara (ed), Academic Press, Inc., 1984, pp. 329–354.

    Google Scholar 

  2. Monoclonal Antibodies and Cancer, Boss BD, Langman R, Trowbridge I, Dulbecco R (eds), Academic Press, NY, 1983.

    Google Scholar 

  3. Ling V, Thompson LH: Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J. Cell. Physiol. 83: 103–116, 1973.

    Article  Google Scholar 

  4. Vistica DT: Cellular pharmacokinetics of the phenylalanine mustards. Pharmac. Ther. 22: 279–405, 1983.

    Article  Google Scholar 

  5. Burns CP, Luttenegger DG, Dudley DT et al: Effect of modification of plasma membrane fatty acid composition on fluidity and methotrexate transport in L1210 murine leukemia cells. Cancer Res. 39: 1726–1732, 1979.

    PubMed  CAS  Google Scholar 

  6. Tritton TR, Yee G: The anticancer agent adriamycin can be actively cytotoxic without entering cells. Science 217: 248–250, 1982.

    Article  CAS  Google Scholar 

  7. Yen A, Reece SL, Albright KL: Membrane origin for a signal eliciting a program of cell differentiation. Experimental Cell Res. 152: 493–499, 1984.

    Article  CAS  Google Scholar 

  8. Demel RA, De Kruyff B: The function of sterols in membranes. Biochim. Biophys. Acta. 457: 109–132, 1976.

    PubMed  CAS  Google Scholar 

  9. Cress AE, Gerner EW: Cholesterol levels inversely reflect the thermal sensitivity of mammalian cells in culture. Nature 283: 677–679, 1980.

    Article  PubMed  CAS  Google Scholar 

  10. Osteux R, Tran-Van-Ky, Biguet P: Contribution a l’etude du mode d’ action de la nystatine sur Candida albicans. C.R. Acad. Sci. 247: 2475–2477, 1958.

    CAS  Google Scholar 

  11. Gottlieb D, Carter HE, Sloneker JH, Amman A: Protection of fungi against polyene antibiotics by sterols. Science 128: 361, 1958.

    Article  PubMed  CAS  Google Scholar 

  12. Hammond SM: Biological activity of polyene antibiotics. In: Progress in Medicinal Chemistry, Vol. 14, Ellis GP, West GB (eds), Elsevier, North-Holland Biomedical Press, 1977, pp 105–179.

    Google Scholar 

  13. Medoff G, Brajtburg J, Kobayashi GS: Antifungal agents useful in therapy of systemic fungal infections. Ann. Rev. Toxicol. 23: 303–330, 1983.

    Article  CAS  Google Scholar 

  14. Norman AW, Spielvogel AM, Wong RG: Polyene antibioticsterol interaction. Adv. Lipid Res. 14: 127–170, 1975.

    Google Scholar 

  15. Kinsky SC: Antibiotic interactions with model membranes. Ann. Rev. Pharmacol. 10: 119–142, 1970.

    Article  PubMed  CAS  Google Scholar 

  16. Andreoli TE, Dennis VW, Weigl AM: The effect of amphotericin B on the water and nonelectrolyte permeability of thin lipid membranes. J. Gen. Physiol. 53: 133–156, 1969.

    Article  PubMed  CAS  Google Scholar 

  17. Andreoli TE: The structure and function of amphotericin B-cholesterol pores in lipid bilayer membranes. Ann. N.Y. Acad. Sci. 235: 448–468, 1974.

    Article  PubMed  CAS  Google Scholar 

  18. DeKruijff B, Gerritsen WJ, Oerlemans A et al: Polyenesterol interactions in membranes of acholeplasma laidlawii cells and lecithin liposomes. I. Specificity of the membrane permeability changes induced by the polyene antibiotics. Biochem. Biophys. Acta. 33: 30–43, 1974.

    Google Scholar 

  19. Norman AW, Demel RA, DeKruijff B et al: Studies on the biological properties of polyene antibiotics: Comparison of other polyenes with filipin in their ability to interact specifically with sterols. Biochim. Biophys. Acta. 290: 1–14, 1972.

    Article  PubMed  CAS  Google Scholar 

  20. Butler WT, Cotlove E: Increased permeability of human erythrocytes induced by amphotericin B. J. Inf. Dis. 123: 341–350, 1971.

    Article  CAS  Google Scholar 

  21. Kumar BV, Medoff, Kobayashi G, Schlessinger D: Uptake of Escherichia Coli DNA into Hela cells enhanced by amphotericin B. Nature 250: 323–325, 1974.

    Article  PubMed  CAS  Google Scholar 

  22. Philippot JR, Cooper AG, Wallach DFH: Regulation of cholesterol biosynthesis by normal and leukemic (L2C) guinea pig lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 74: 956–960, 1977.

    Article  PubMed  CAS  Google Scholar 

  23. Malhotra SK: The plasma membrane. Vol. 6 in the Wiley Series-Transport in the Life Sciences. E. Edward Bittar, Series Editor. John Wiley & Sons, New York, 1983, pp. 14–15.

    Google Scholar 

  24. Sinensky M: Defective regulation of cholesterol biosynthesis and plasma membrane fluidity in a Chinese Hamster ovary cell mutant. Proc. Natl. Acad. Sci. U.S.A. 75: 1247–1249, 1978.

    Article  PubMed  CAS  Google Scholar 

  25. Coleman PS, Lavieter BB: Membrane cholesterol, tumori-genesis, and the biochemical phenotype of neoplasia. CRC Crit. Rev. Biochem. 11: 341–393, 1981.

    PubMed  CAS  Google Scholar 

  26. Medoff G, Valeriote F, Lynch RG et al: Synergistic effect of amphotericin B and 1, 3-Bis(2-chloroethyl)-1-nitrosourea against a transplantable AKR leukemia. Cancer Res. 34: 974–978, 1974.

    PubMed  CAS  Google Scholar 

  27. Presant CA, Valeriote F, Proffitt R, Metter G: Amphotericin B: Interactions with nitrosoureas and other antineoplastic drugs. In: Nitrosoureas, Academic Press, Inc., Chapter 29, 1981, pp. 343–360.

    Google Scholar 

  28. Medoff G, Valeriote F, Little JR et al: Antitumor effects of amphotericin B. In: Augmenting Agents in Cancer Therapy, Hersh EM et al (eds), New York, Raven Press, 1981, pp. 479–495.

    Google Scholar 

  29. Little JR, Abegg A, Plut E: The relationship between adjuvant and mitogenic effects of amphotericin methyl ester. Cell. Immunol. 78: 224–235, 1983.

    Article  PubMed  CAS  Google Scholar 

  30. Valeriote F, Lynch R, Medoff G, Kumar BV: Protective effects of Amphotericin B against spontaneous and transplantable murine tumors. J. Natl. Cancer Inst. 56: 557–560, 1976.

    PubMed  CAS  Google Scholar 

  31. Klein ME, Frayer K: Alterations in secondary adriamycin resistance by amphotericin B and hyperthermia. Proc. Am. Assoc. Cancer Res., No. 334, p. 84, 1978.

    Google Scholar 

  32. Kuwano M, Akiyama S, Endo H, Kohga M: Potentiation of fusidic acid and lentinan effects upon normal and transformed cells by AmB. Biochem. Biophys. Res. Commun. 49: 1241–1248, 1972.

    Article  PubMed  CAS  Google Scholar 

  33. Medoff J, Medoff G, Goldstein MN et al: Amphotericin Binduced sensitivity to actinomycin D in drug-resistant HeLa cells. Cancer Res. 35: 2548–2552, 1975.

    PubMed  CAS  Google Scholar 

  34. Ozols RF, Hogan WM, Grotzinger KR et al: Effects of amphotericin B on adriamycin and melphalan cytotoxicity in human and murine ovarian carcinoma and in L1210 leukemia. Cancer Res. 43: 959–964, 1983.

    PubMed  CAS  Google Scholar 

  35. Valeriote FA, Medoff G, Dieckman, J: Potentiation of anticancer agent cytotoxicity against sensitive and resistant AKR leukemia by amphotericin B. Cancer Res. 39: 2041–2045, 1979.

    PubMed  CAS  Google Scholar 

  36. Medoff G, Comfort M, Kobayashi GS: Synergistic action of amphotericin B and 5-fluorouracil against yeast-like organisms. Proc. Soc. Exp. Biol. Med. 138: 571–574, 1971.

    PubMed  CAS  Google Scholar 

  37. Polak A: Synergism of polyene antibiotics with 5-fluoro-cytosine. Chemotherapy 24: 2–10, 1978.

    Article  PubMed  CAS  Google Scholar 

  38. Bennett JE, Dismuker WE, Duma RJ et al: A comparison of amphotericin B alone and combined with flucytosine in the treatment of cryptoccal meningitis. N. Engl. J. Med. 301: 126–131, 1979.

    Article  PubMed  CAS  Google Scholar 

  39. Medoff G, Kwan CN, Schlessinger D, Kobayashi GS: Potentiation of rifampicin, rifampicin analogs and tetracycline against animal cells by amphotericin B and polymycin B. Cancer Res. 33: 1146–1149, 1973.

    PubMed  CAS  Google Scholar 

  40. Twentyman PR: The effect of bleomycin and pentamycin in vitro and in vivo. Brit. J. Cancer 33: 459–464, 1976.

    Article  PubMed  CAS  Google Scholar 

  41. Block JB, Tahbarah H, Isacoff W, Drakes TP: Chemotherapy of unresectable or recurrent metastatic malignant melanomas: An update. J. Dermatol. Surg. Oncol. 5: 118–128, 1979.

    PubMed  CAS  Google Scholar 

  42. Komiyama S, Hiroto I, Kuwano M, Endo K: Enhancement of radiation effect on transformed fibroblastic cells by a synergistic combination of 5-fluorouracil and polyenes in vitro. Gann 65: 85–87, 1974.

    PubMed  CAS  Google Scholar 

  43. Nakashima T, Kuwano M, Matsui K et al: Potentiation of bleomycin by an antifungal polyene, pentamycin, in transformed animal cells. Cancer Res. 34: 3258–3261, 1974.

    PubMed  CAS  Google Scholar 

  44. Kuwano M, Kaniya T, Endo H, Komiyama S: Potentiation of 5-fluorouracil, chromomycin A3, and bleomycin by amphotericin B or Polymyxin B In transformed fibroblastic cells. Antimicrob. Agents Chemother. 3: 530–584, 1973.

    Google Scholar 

  45. Ariyama S-I, Kuwano M, Komiyami S, Saneyoshi M: Antitumor effect of a combination of 6-Methylthioinosine and amphotericin B on mouse leukemia L1210. Cancer Letters 9: 305–311, 1980.

    Article  Google Scholar 

  46. Kitao T, Hattri K: Erythrocyte entrapment of Daunomycin by amphotericin B without hemolysis. Cancer Res. 40: 1351–1353, 1980.

    PubMed  CAS  Google Scholar 

  47. Medoff G, Valeriote FA, Dieckman J: Potentiation of anticancer agents by Amphotericin B. J. Natl. Cancer Inst. 67: 131–135, 1983.

    Google Scholar 

  48. Kotler-Brajtburg J, Medoff G, Schlessinger D, Kobayashi GS: Amphotericin B and filipin effects on L and HeLa cells: Dose response. Antimicrob. Ag. Chem. 1: 803–808, 1977.

    Google Scholar 

  49. Valeriote F, Medoff G, Dieckman J: Potentiation of cytotoxicity of anticancer agents by several different polyene antibiotics. J. Natl. Cancer Inst. 72: 435–439, 1984.

    PubMed  CAS  Google Scholar 

  50. Laurent G, Atassi G, Hildebrand J: Potentiation of 1-(2-chloroethyl)-3-cyclohexyl-nitrosourea by amphotericin B in murine ependymoblastoma. Cancer Res. 36: 4069–4073, 1976.

    PubMed  CAS  Google Scholar 

  51. Valeriote F, Dieckman J, Fientje D et al: Amphotericin B potentiation of anticancer agents against M0PC-315 plasmacytoma and Lewis Lung carcinoma. Cancer Chemother. Pharmacol. 13: 126–130, 1984.

    Article  PubMed  CAS  Google Scholar 

  52. Muller PJ, Tator CH: The effect of amphotericin B on the survival of brain-tumor-bearing mice treated with CCNU. J. Neurosurg. 49: 579–588, 1978.

    Article  PubMed  CAS  Google Scholar 

  53. Valeriote F, Medoff G, Tolen S, Dieckman J: Amphotericin B potentiation of the cytotoxicity of anticancer agents against both normal hematopoietic and leukemia cells in mice. J. Natl. Cancer Inst. 73: 475–482, 1984.

    PubMed  CAS  Google Scholar 

  54. Chabot GG, Dieckman J, Valeriote FA: Time and route dependence of the potentiation of CCNU cytotoxicity by Amphotericin B in the AKR leukemia. Proc. Am. Assoc. Cancer Res., Abstract 1267, 1984.

    Google Scholar 

  55. Foresti M, Amati P. Influence of amphotericin B on leucine uptake in 3T3 cells. Biochem. Biophys. Acta 732: 251–255, 1983.

    Google Scholar 

  56. Presant CA, Carr D: Amphotericin B (Fungizone) enhancement of nitrogen mustard uptake by human tumor cells. Biochim. Biophys. Acta 93: 1067–1073, 1980.

    CAS  Google Scholar 

  57. Deuticke B, Kim M, Zollner C: The influence of amphotericin B on the permeability of mammalian erythrocytes to nonelectrolytes anions and cations. Biochim. Biophys. Acta. 318: 345–359, 1973.

    Article  CAS  Google Scholar 

  58. Kitagawa T, Andoh T: Stimulation by amphotericin B of uridine transport, RNA synthesis and DNA synthesis in densityinhibited fibroblasts. Exp. Cell Res. 115: 37–46, 1978.

    Article  PubMed  CAS  Google Scholar 

  59. Laurent G, Dewerie-Vanhouche J, Machin D, Hildebrand J: Inhibition of RNA synthesis in murine ependymoblastoma by the combination of amphotericin B and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea. Cancer Res. 40: 939–942, 1980.

    PubMed  CAS  Google Scholar 

  60. Chabot GG, Valeriote FA, Pazdur R et al: Pharmacology of iv. Amphotericin B in mouse and humans and potentiation of CCNU cytotoxicity in AKR mouse. Proc. Am. Assoc. Cancer Res., 26: 355, Abstract 1399, 1985.

    Google Scholar 

  61. Claringbold P, Mehta K, Lopez-Berestein G: Amphotericin B inhibition of serum-induced expression of tissue transglutaminase in mouse peritoneal macrophages. Proc. Am. Assoc. Cancer Res. 26: 335, No. 1320, 1985.

    Google Scholar 

  62. Presant CA, Hillinger S, Klahr C: Phase II study of 1, 3-bis(2-chloroethyl)-1-nitrosourea with amphotericin B in bronchogenic carcinoma. Cancer 45: 6–10, 1980.

    Article  PubMed  CAS  Google Scholar 

  63. Sarna G, Lowitz BB, Ganz PA, Cline MJ: Amphotericin B plus combination chemotherapy for extensive non-small cell bronchogenic carcinoma. Cancer Chemother. Pharmacol. 5: 89–92, 1980.

    Article  PubMed  CAS  Google Scholar 

  64. Presant CA, Bartolucci AA, Lowenbraun S: The SECSG effect of amphotericin B on combination chemotherapy of metastatic sarcomas. Cancer 53: 214–218, 1984.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Chabot, G.G., Valeriote, F.A. (1986). Modification of Cell Sensitivity to Anticancer Agents by Polyenes. In: Valeriote, F.A., Baker, L.H. (eds) Biochemical Modulation of Anticancer Agents: Experimental and Clinical Approaches. Developments in Oncology, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2331-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2331-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9432-0

  • Online ISBN: 978-1-4613-2331-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics