Skip to main content

Part of the book series: Developments in Oncology ((DION,volume 47))

Abstract

The effectiveness of chemotherapy in the treatment of many tumors is limited by two clinically distinct types of drug resistance. Tumors such as colon cancer, non-small lung cancer and malignant melanoma are inherently resistant to chemotherapy and response rates in these patients are low. In contrast, patients with tumors such as ovarian cancer and small cell lung cancer usually respond to the initial drug regimen but acquired drug resistance often develops and chemotherapy is of limited benefit in patients with recurrent or residual disease. A particularly clinically relevant feature of acquired drug resistance is the frequent development of a broad cross resistance to a wide variety of other drugs which is associated with the onset of resistance to the primary drug regimen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Juliano RL, Ling V: A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta. 455: 152–162, 1976.

    Google Scholar 

  2. Kartner N, Shales M, Riordan JR et al: Daunorubicinresistant Chinese hamster ovary cells expressing multidrug resistance and a cell-surface P-glycoprotein. Cancer Res. 43: 4413–4419, 1983.

    PubMed  CAS  Google Scholar 

  3. Kartner N, Riordan JR, Ling V: Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines. Science 221: 1285–1288, 1983.

    Article  PubMed  CAS  Google Scholar 

  4. Beck WT, Mueller TJ, Tanzer LR: Altered surface membrane glycoproteins in vinca alkaloid-resistant human leukemic lymphoblasts. Cancer Res. 39: 2070–2075, 1979.

    PubMed  CAS  Google Scholar 

  5. Debenham PG, Kartner N, Siminovitch L et al: DNA-mediated transfer of multiple drug resistance and plasma membrane glycoprotein expression. Mol. Cell. Biol. 2: 881–889, 1982.

    PubMed  CAS  Google Scholar 

  6. Ling V: Genetic basis of drug resistance in mammalian cells. In: Drug and Hormone Resistance in Neoplasia, Vol. 1, Bruchovsky N, Goldie JH (eds), Miami, CRC, 1982, pp. 1–19.

    Google Scholar 

  7. Tsuruo T, Lida H, Yamashiro M et al: Enhancement of vincristine and adriamycin induced cytotoxicity by verapamil in P388 leukemia and its sublines resistant to vincristine and adriamycin. Biochem. Pharm. 31: 3138–3140, 1982.

    Article  PubMed  CAS  Google Scholar 

  8. Tsuruo T: Reversal of acquired resistance to vinca alkaloids and anthrcyclines antibiotics. Cancer Treat. Rep. 67: 889–894, 1983.

    PubMed  CAS  Google Scholar 

  9. Slater LM, Murray SL, Wetzel MW: Verapamil restoration of daunorubicin responsiveness in daunorubicin-resistant Ehrlich ascites carcinoma. J. Clin. Invest. 70: 1131–1134, 1982.

    Article  PubMed  CAS  Google Scholar 

  10. Tsuruo T, Iida H, Jojiri M et al: Circumvention of vincristine and adriamycin resistance in vitro and in vivo by calcium influx blockers. Cancer Res. 43: 2905–2910, 1983.

    PubMed  CAS  Google Scholar 

  11. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y: Increased accumulation of vincristine and adriamycin in drug-resistant P388 tumor cells following incubation with calcium antagonists and calmodulin inhibitors. Cancer Res. 42: 4730–4733, 1982.

    PubMed  CAS  Google Scholar 

  12. Rogan AM, Hamilton TC, Young RC et al: Reversal of adriamycin resistance by verapamil in human ovarian cancer. Science 224: 994–996, 1984.

    Article  PubMed  CAS  Google Scholar 

  13. Bell DR, Gerlach JH, Kartner N et al: Detection of Pglycoprotein in ovarian cancer: A molecular marker associated with multidrug resistance. J. Clin. Oncol. 3: 311–315, 1985.

    PubMed  CAS  Google Scholar 

  14. Meister A: New aspects of glutathione biochemistry and transport—selective alteration of glutathione metabolism. Nut. Rev. 42: 397–410, 1984.

    Article  CAS  Google Scholar 

  15. Meister A: Selective modification of glutathione metabolism. Science 220: 472–477, 1983.

    Article  PubMed  CAS  Google Scholar 

  16. Arrick BA, Nathan CF: Glutathione metabolism as a determinant of therapeutic efficacy. A review. Cancer Res. 44: 4224–4232, 1984.

    CAS  Google Scholar 

  17. Biaglow JE, Varnes ME: The role of thiols in cellular response to radiation and drugs. Rad. Res. 95: 437–455, 1983.

    Article  CAS  Google Scholar 

  18. Suzukake K, Petro BJ, Vistica DT: Reduction in glutathione content of L-PAM-resistant L1210 cells confers drug sensitivity. Biochem. Pharmacol. 31: 121–124, 1982.

    Article  PubMed  CAS  Google Scholar 

  19. Suzukake K, Vistica BP, Vistica DT: Dechlorination of L-phenylalanine mustard by sensitive and resistant tumor cells and its relationship to intracellular glutathione content. Biochem. Pharmacol. 32: 165–167, 1983.

    Article  PubMed  CAS  Google Scholar 

  20. Relle-Somfai S, Suzukake K, Vistica BP, Vistica DT: Reduction in cellular glutathione by buthione sulfoximine and sensitization of murine tumor cells resistant to L-phenylalanine mustard. Biochem. Pharm. 33: 485–499, 1984.

    Article  Google Scholar 

  21. Calcutt G, Connors TA: Tumor sulfhydryl levels and sensitivity to the nitrogen mustard merophan. Biochem. Pharmacol. 12: 839–845, 1963.

    Article  PubMed  CAS  Google Scholar 

  22. Gurtoo HL, Hipkens JH, Sharma CD: Role of glutathione in the metabolism-dependent toxicity and chemotherapy of cyclophosphamide. Cancer Res. 41: 3584–3591, 1981.

    PubMed  CAS  Google Scholar 

  23. Griffith OW: Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. JBC 257: 13704–13712, 1982.

    CAS  Google Scholar 

  24. Griffith OW, Meister A: Potent and specific inhibitor of glutathione synthesis by buthionine sulfoximine (S-u-butyl homocysteine sulfoximine). JBC 253: 7558–7560, 1979.

    Google Scholar 

  25. Hamilton TC, Young RC, McKoy WM et al: Characterization of a human ovarian carcinoma cell line (NIH: OVCAR-3) with androgen and estrogen receptors. Cancer Res. 43: 5379–5389, 1983.

    PubMed  CAS  Google Scholar 

  26. Hamilton TC, Young RC, Ozols RF: Experimental model systems of ovarian cancer: Applications to the design and evaluation of new treatment approaches. Semin. Oncol. 11: 285–298, 1984.

    PubMed  CAS  Google Scholar 

  27. Green JA, Vistica DT, Young RC et al: Potentiation of melphalan cytotoxicity in human ovarian cancer cell lines by glutathione depletion. Cancer Res. 44: 5427–5431, 1984.

    PubMed  CAS  Google Scholar 

  28. Behrens BC, Louie KG, Hamilton TC et al: Resistance and cross resistance of human ovarian cancer cell lines to adriamycin, melphalan and irradiation. Proc. Amer. Assoc. Can. Res. 25: 336, 1984.

    Google Scholar 

  29. Hamilton TC, Young RC, Louie KG et al: Characterization of a xenograft model of human ovarian carcinoma which produces ascites and intraabdominal carcinomatosis. Cancer Res. 44: 5286–5290, 1984.

    PubMed  CAS  Google Scholar 

  30. Louie KG, Hamilton TC, Winker MA et al: Adriamycin accumulation and metabolism in adriamycin sensitive and resistant human ovarian cancer cell lines. Biochem. Pharmacol, (in press), 1985.

    Google Scholar 

  31. Hamilton TC, Winker MA, Louie KG et al: Augmentation of adriamycin, melphalan and cisplatin cytotoxicity in drug resistant and sensitive human ovarian cell lines by buthionine sulfoximine mediated glutathione depletion. Biochem. Pharmacol. 34: 2583–2586, 1985.

    Article  PubMed  CAS  Google Scholar 

  32. Hamilton TC, Young RC, Rogan AM et al: A unique intraperitoneal model of human ovarian cancer. Proc. Amer. Assoc. Can. Res. 25: 59, 1984.

    Google Scholar 

  33. Hamilton TC, Winker MA, Louie KG et al: Augmentation of adriamycin, melphalan, and cisplatin cytotoxicity by buthionine sulfoximine depletion of glutathione in drug resistant human ovarian cancer cell lines. Proc. Amer. Assoc. Can. Res. 26: 345, 1985.

    Google Scholar 

  34. Wellner VP, Anderson ME, Puri RN et al: Radioprotection by glutathione ester: Transport of glutathione ester into human lymphoid cells and fibroblasts. Proc. Natl. Acad. Sci. USA 81: 4732–4735, 1984.

    Article  PubMed  CAS  Google Scholar 

  35. Myers CE: The biochemical basis for selective free radical injury. In: Rational Basis for Chemotherapy, New York, NY, Alan R. Liss, 1983, pp. 423–426.

    Google Scholar 

  36. Doroshow JH, Locker GY, Myers CE: Enzymatic defenses of the mouse heart against reactive oxygen metabolites. J. Clin. Invest. 65: 128–135, 1980.

    Article  PubMed  CAS  Google Scholar 

  37. Ozols RF, Ostchega Y, Myers CE et al: High dose cisplatin in hypertonic saline in refractory ovarian cancer. J. Clin. Oncol, (in press), 1985.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Ozols, R.F., Hamilton, T.C., Louie, K.G., Behrens, B.C., Young, R.C. (1986). Glutathione Depletion with Buthionine Sulfoximine: Potential Clinical Applications. In: Valeriote, F.A., Baker, L.H. (eds) Biochemical Modulation of Anticancer Agents: Experimental and Clinical Approaches. Developments in Oncology, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2331-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2331-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9432-0

  • Online ISBN: 978-1-4613-2331-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics