Skip to main content

Part of the book series: Developments in Oncology ((DION,volume 47))

Abstract

This paper reviews the current status of glutathione metabolism, methods that have been developed for the depletion of cellular glutathione and for increasing glutathione levels, and studies on the effects of modulation of cellular glutathione levels. Readers interested in earlier work on the enzymology, metabolism, transport, and functions of glutathione should consult several recent reviews (1–5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Larsson A, Orrenius S, Holmgren A, Mannervik B (eds): Functions of Glutathione: Biochemical, Physiological, Toxicological, and Clinical Aspects, Raven Press, New York, 1983.

    Google Scholar 

  2. Meister A, Anderson ME: Glutathione. Ann. Rev. Biochem. 52: 711–760, 1983.

    Article  PubMed  CAS  Google Scholar 

  3. Arias IM, Jakoby WB (eds): Glutathione, Metabolism and Function. Kroc Foundation Series, Vol. 6, Raven Press, New York, 1976.

    Google Scholar 

  4. Meister A: New aspects of glutathione biochemistry and transport: Selective alteration of glutathione metabolism. Fed. Proc. 43: 3031–3042, 1984.

    PubMed  CAS  Google Scholar 

  5. Sies H, Wendel A (eds): Function of Glutathione in Liver and Kidney, Springer-Verlag, New York, 1977.

    Google Scholar 

  6. Griffith OW, Meister A: Differential inhibition of glut-amine and γ-glutamylcysteine synthetases by a α-alkyl analogs of methionine sulfoximine that induce convulsions. J. Biol. Chem. 253: 2333–2338, 1978.

    PubMed  CAS  Google Scholar 

  7. Griffith OW, Anderson ME, Meister A: Inhibition of glutathione biosynthesis by prothionine sulfoximine (S-n-propyl-homocysteine sulfoximine): A selective inhibitor of γ-glutamylcysteine synthetase. J. Biol. Chem. 254: 1205–1210, 1979.

    PubMed  CAS  Google Scholar 

  8. Griffith OW, Meister A: Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J. Biol. Chem. 254: 7558–7560, 1969.

    Google Scholar 

  9. Griffith OW: Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. J. Biol. Chem. 257: 13, 704–13, 712, 1982.

    Google Scholar 

  10. Williamson JM, Meister A: Stimulation of hepatic glutathione formation by administration of L-2-oxothiazolidine4-carboxylate, a 5-oxo-L-prolinase substrate. Proc. Natl. Acad. Sci. U.S. 78: 936–939, 1981.

    Article  CAS  Google Scholar 

  11. Williamson JM, Meister A: New substrates of 5-oxo-L-prolinase. J. Biol. Chem. 257: 12, 039–12, 042, 1982.

    Google Scholar 

  12. Williamson JM, Boettcher B, Meister A: An intracellular cysteine delivery system that protects against toxicity by promoting glutathione synthesis. Proc. Natl. Acad. Sci. U.S. 79: 6246–6249, 1982.

    Article  CAS  Google Scholar 

  13. Anderson ME, Meister A: Transport and direct utilization of γ-glutamylcyst(e) ine for glutathione synthesis. Proc. Natl. Acad. Sci. U.S. 80: 707–711, 1983.

    Article  CAS  Google Scholar 

  14. Puri RN, Meister A: Transport of glutathione as γ-glutamylcysteinylglycyl ester into liver and kidney. Proc. Natl. Acad. Sci. U.S. 80: 5258–5260, 1983.

    Article  CAS  Google Scholar 

  15. Wellner VP, Anderson ME, Puri RN et al: Radioprotection by glutathione ester: Transport of glutathione ester into human lymphoid cells and fibroblasts. Proc. Natl. Acad. Sci. U.S. 81: 4732–4735, 1984.

    Article  CAS  Google Scholar 

  16. Anderson ME, Powrie F, Puri RN, Meister A: Glutathione monoethyl ester; preparation, uptake by tissues, and conversion to glutathione. Arch. Biochem. Biophys. 239: 538–548, 1985.

    Article  PubMed  CAS  Google Scholar 

  17. Meister A, Anderson ME, Hwang O: Intracellular cysteine and glutathione delivery systems. J. Am. Coll. Nut., in press, 1985.

    Google Scholar 

  18. Meister A, Griffith OW: Effects of methionine sulfoximine analogs on the synthesis of glutamine and glutathione: Possible chemotherapeutic implications. Cancer Treat. Rep. 63: 1115–1121, 1979.

    PubMed  CAS  Google Scholar 

  19. Meister A: Selective modification of glutathione metabolism. Science 220: 471–477, 1983.

    Article  Google Scholar 

  20. Richman P, Meister A: Regulation of γ-glutamyl-cysteine synthetase by nonallosteric feedback inhibition of glutathione. J. Biol. Chem. 250: 1422–1426, 1975.

    PubMed  CAS  Google Scholar 

  21. Griffith OW, Meister A: Translocation of intracellular glutathione to membrane-bound γ-glutamyl transpeptidase as a discrete step in the γ-glutamyl cycle: Glutathionuria after inhibition of transpeptidase. Proc. Natl. Acad. Sci. U.S. 76: 268–272, 1979.

    Article  CAS  Google Scholar 

  22. Griffith OW, Meister A: Glutathione: Interorgan translocation, turnover and metabolism. Proc. Natl. Acad. Sci. U.S. 76: 4932–4935, 1979.

    Article  Google Scholar 

  23. Abbott WA, Bridges RJ, Meister A: Extracellular metabolism of glutathione accounts for its disappearance from the basolateral circulation of the kidney. J. Biol. Chem. 259: 15, 393–15, 400, 1984.

    Google Scholar 

  24. Meister A: 5-Oxoprolinuria (pyroglutamic aciduria) and other disorders of the γ-glutamyl cycle. In: Metabolic Basis of Inherited Disease, Stanbury JB, Wyngaarden J, Frederickson DS, Goldstein JL, Brown MS (eds), New York, McGraw-Hill, 1982, Vol. 10, pp. 348–359.

    Google Scholar 

  25. Meister A: Glutathione synthesis. In: The Enzymes, Boyer P (ed), New York, Academic Press, 1974, pp. 671–697.

    Google Scholar 

  26. Meister A: Glutamine synthetase of mammals. In: The Enzymes, Boyer P (ed), New York, Academic Press, 1974, Vol. 10, pp. 699–754.

    Google Scholar 

  27. Ronzio R, Meister A: Phosphorylation of methionine sulfoximine by glutamine synthetase. Proc. Natl. Acad. Sci. U.S. 59: 164–170, 1968.

    Article  CAS  Google Scholar 

  28. Richman PG, Orlowski M, Meister A: Inhibition of γ-glutamyl-cysteine synthetase by L-methionine-S-sulfoximine. J. Biol. Chem. 248: 6684–6690, 1973.

    PubMed  CAS  Google Scholar 

  29. Rowe WB, Meister A: Identification of L-methionine-S-sulfoximine as the convulsant isomer of methionine sulfoximine. Proc. Natl. Acad. Sci. U.S. 66: 500–506, 1970.

    Article  CAS  Google Scholar 

  30. Ronzio RA, Rowe WB, Meister A: Studies on the mechanism of inhibition of glutamine synthetase by methionine sulfoximine. Biochemistry 8: 1066–1075, 1969.

    Article  PubMed  CAS  Google Scholar 

  31. Rowe WB, Ronzio RA, Meister A: Inhibition of glutamine synthetase by methionine sulfoximine, studies on methionine sulfoximine phosphate. Biochemistry 8: 2674–2680, 1969.

    Article  PubMed  CAS  Google Scholar 

  32. Manning JM, Moore S, Rowe WB, Meister A: Identification of L-methionine-S-sulfoximine as the diastereoisomer of L-methionine-SR-sulfoximine that inhibits glutamine synthetase. Biochemistry 8: 2681–2685, 1969.

    Article  PubMed  CAS  Google Scholar 

  33. Palekar AG, Tate SS, Meister A: Decrease in glutathione levels of kidney and liver after injection of methionine sulfoximine into rats. Biochem. Biophys. Res. Commun. 62: 651–657, 1975.

    Article  PubMed  CAS  Google Scholar 

  34. Meister A: Inhibition of glutamine synthetase and γ-glutamylcysteine synthetase by methionine sulfoximine and related compounds. In: Enzyme-Activated Irreversible Inhibitors, Seiler N, Jung MJ, Koch-Weser J (eds), Amsterdam, Elsevier-North Holland Biomedical Press, 1978, pp. 187–211.

    Google Scholar 

  35. Meister A: The specificity of glutamine synthetase and its relationship to substrate conformation at the active site. Adv. Enzymol. 31: 183–218, 1968.

    PubMed  CAS  Google Scholar 

  36. Meister A: On the synthesis and utilization of glutamine. Harvey Lectures Series 63: 139–178, 1969.

    CAS  Google Scholar 

  37. Gass JD, Meister A: Computer analysis of the active site of glutamine synthetase. Biochemistry 9: 842–846, 1970.

    Article  PubMed  CAS  Google Scholar 

  38. Seddon AP, Meister A: Unpublished data.

    Google Scholar 

  39. Dethmers JK, Meister A: Glutathione export by human lymphoid cells: Depletion of glutathione by inhibition of its synthesis decreases export and increases sensitivity to irradiation. Proc. Natl. Acad. Sci. U.S. 78: 7492–7496.

    Google Scholar 

  40. Clement J, Griffith OW, Meister A: Unpublished studies.

    Google Scholar 

  41. Mitchell JB, Rosso A, Biaglow JE, McPherson S: Cellular glutathione depletion by diethyl maleate or buthionine sulfoximine: No effect of glutathione depletion on the oxygen enhancement ratio. Rad. Res. 96: 422–428, 1983.

    Google Scholar 

  42. Guichard M, Jensen G, Meister A, Malaise EP: Depletion of glutathione synthesis by buthionine sulfoximine decreases the oxygen enhancement ratio of V79 cells. Proc. Radiat. Res. Soc, Abstract D-10, 1983.

    Google Scholar 

  43. Biaglow JE, Varnes ME, Clark EP, Epp ER: The role of thiols in cellular response to radiation and drugs. Radiat. Res. 95: 437–455, 1983.

    Article  PubMed  CAS  Google Scholar 

  44. Arrick BA, Nathan CF, Griffith OW, Cohn ZA: Glutathione depletion sensitizes tumor cells to oxidative cytolysis. J. Biol. Chem. 257: 1231–1237, 1982.

    PubMed  CAS  Google Scholar 

  45. Arrick BA, Griffith OW, Cerami A: Inhibition of glutathione synthesis as a chemotherapeutic strategy for trypanosomiasis. J. Exp. Med. 153: 720–725, 1981.

    Article  PubMed  CAS  Google Scholar 

  46. Suzakake K, Petro BJ, Vistica DT: Reduction in glutathione content of L-PAM resistant L1210 cells confers drug sensitivity. Biochem. Pharmacol. 31: 121–124, 1982.

    Article  Google Scholar 

  47. Suzukake K, Vistica BP, Vistica DT: Dechlorination of L-phenylalanine mustard by sensitive and resistant tumor cells and its relationship to intracellular glutathione content. Biochem. Pharmacol. 32: 165–167, 1983.

    Article  PubMed  CAS  Google Scholar 

  48. Vistica DT, Somfai-Relle S, Suzukake K, Petro B: Inhibition of glutathione biosynthesis by S-n-butyl homocysteine sulfoximine and sensitization of murine tumor cells resistant to L-phenylanine mustard. J. Cell. Biochem. Suppl. 6: 375, 1982.

    Google Scholar 

  49. Louie KG, Behrens BC, Kihsella TJ et al: Radiation survival parameters of antineoplastic drug-sensitive and resistant human ovarian cancer cell lines and their modification by buthionine sulfoximine. Cancer Res. 45: 2110–2115, 1965.

    Google Scholar 

  50. Green JA, Vistica DT, Young RC et al: Potentiation of melphalan cytotoxicity in human ovarian cancer cell lines by glutathione depletion. Cancer Res. 44: 5427–5431, 1984.

    PubMed  CAS  Google Scholar 

  51. Ozols R: This symposium.

    Google Scholar 

  52. Mitchell JB, Russo A, Kinsella TJ, Glatstein E: Glutathione elevation during thermotolerance induction and thermosensitization by glutathione depletion. Cancer Res. 43: 987–991, 1983.

    PubMed  CAS  Google Scholar 

  53. Jensen GL, Meister A: Radioprotection of human lymphoid cells by exogenously-supplied glutathione is mediated by γ-glutamyl transpeptidase. Proc. Natl. Acad. Sci. U.S. 80: 4714–4717, 1983.

    Article  CAS  Google Scholar 

  54. Meister A, Griffith OW: Effect of buthionine sulfoximine and related compounds on mitochondrial glutathione levels. Fed. Proc. 42: 2210, 1983.

    Google Scholar 

  55. Griffith OW, Meister A: Origin and turnover of mitochondrial glutathione. Proc. Natl. Acad. Sci. U.S. 82: 4668–4672, 1985.

    Article  CAS  Google Scholar 

  56. Biaglow JE: This symposium.

    Google Scholar 

  57. Berggren M, Dawson J, Moldeus P: Glutathione biosynthesis in the isolated perfused rat lung: Utilization of extracellular glutatione. FEBS Letters 176: 189–192, 1984.

    Article  PubMed  CAS  Google Scholar 

  58. Tsan MF, Danis EH, Del Vecchio PJ, Rosano CL: Enhancement of intracellular glutathione protects endothelial cells against oxidant damage. Biochem. Biophys. Res. Commun. 127: 270–276, 1985.

    Article  PubMed  CAS  Google Scholar 

  59. Deneke SM, Lynch BA, Fanburg BL: Transient depletion of lung glutathione by diethylmaleate enhances oxygen toxicity. J. Appl. Physiol. 58: 571–574, 1985.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Meister, A. (1986). Modulation of Intracellular Levels of Glutathione. In: Valeriote, F.A., Baker, L.H. (eds) Biochemical Modulation of Anticancer Agents: Experimental and Clinical Approaches. Developments in Oncology, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2331-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2331-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9432-0

  • Online ISBN: 978-1-4613-2331-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics